Return to search

Ab initio simulations of core level spectra : Towards an atomistic understanding of the dye-sensitized solar cell

The main focus of this thesis is ab initio modeling of core level spectra with a high-level quantum chemical description both of the chemical interactions and of local atomic multiplet effects. In particular, the combination of calculations and synchrotron-based core-level spectroscopy aims at understanding the local structure of the electronic valence in transition metal complexes, and the details of the solvation mechanisms of electrolyte solutions, systems relevant for the dye-sensitized solar cell. Configurational sampling in solution is included through molecular dynamics simulations. Transition metal complexes are studied with x-ray absorption (XA) and resonant inelastic scattering (RIXS) spectroscopy, characterizing excited states with atomic site specificity. The theoretical multiconfigurational method, applying an active-space partitioning of the molecular orbitals (RASSCF), is used to assign the transitions observed in spectra of hydrated Ni2+ explicitly, including charge transfer and multiplet effects. Furthermore, the solvent-induced binding energy properties of the I- and I3- anions in aqueous, ethanol, and acetonitrile solutions are analyzed using photoelectron spectroscopy (XPS). The study shows that specific ion–solvent interactions are important for the core-level binding energy shifts in solution. The special case with I3- dissolved in water, where hydrogen bonding causes breaking of the molecular symmetry, is treated and proves that the geometry changes influence the photoelectron spectrum of aqueous I3- directly.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:su-93098
Date January 2013
CreatorsJosefsson, Ida
PublisherStockholms universitet, Fysikum, Stockholm : Department of Physics, Stockholm University
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds