Return to search

Efficient verification of universal and intermediate quantum computing

The promise of scalable quantum technology appears more realistic, after recent advances in both theory and experiment. Assuming a quantum computer is developed, the task of verifying the correctness of its outcome becomes crucial. Unfortunately, for a system that involves many particles, predicting its evolution via classical simulation becomes intractable. Moreover, verification of the outcome by computational methods, i.e. involving a classical witness, is believed inefficient for the hardest problems solvable by a quantum computer. A feasible alternative to verify quantum computation is via cryptographic methods, where an untrusted prover has to convince a weak verifier for the correctness of his outcome. This is the approach we take in this thesis. In the most standard configuration the prover is capable of computing all polynomial-time quantum circuits and the verifier is restricted to classical with very modest quantum power. The goal of existing verification protocols is to reduce the quantum requirements for the verifier - ideally making it purely classical - and reduce the communication complexity. In Part II we propose a composition of two existing verification protocols [Fitzsimons and Kashefi, 2012], [Aharonov et al., 2010] that achieves quadratic improvement in communication complexity, while keeping the quantum requirements for the verifier modest. Along this result, several new techniques are proposed, including the generalization of [Fitzsimons and Kashefi, 2012] to prime dimensions. In Part III we discuss the idea of model-specific quantum verification, where the prover is restricted to intermediate quantum power, i.e. between full-fledged quantum and purely classical, thus more feasible experimentally. As a proof of principle we propose a verification protocol for the One-Pure-Qubit computer [Knill and Laflamme, 1998], which tolerates noise and is capable of computing hard problems such as large matrix trace estimation. The verification protocol is an adaptation of [Fitzsimons and Kashefi, 2012] running on Measurement-Based Quantum Computing with newly proved properties of the underlying resources. Connections of quantum verification to other security primitives are considered in Part IV. Authenticated quantum communication has been already proved to relate to quantum verification. We expand this by proposing a quantum authentication protocol derived from [Fitzsimons and Kashefi, 2012] and discuss implications to verification with purely classical verifier. Connections between quantum security primitives, namely blindness - prover does not learn the computation -, and classical security are considered in Part V. We introduce a protocol where a client with restricted classical resources computes blindly a universal classical gate with the help of an untrusted server, by adding modest quantum capabilities to both client and server. This example of quantum-enhanced classical security we prove to be a task classically impossible.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:726578
Date January 2016
CreatorsKapourniotis, Theodoros
ContributorsKashefi, Elham
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/25492

Page generated in 0.0018 seconds