Return to search

Abelian Chern-Simons theory with toral gauge group, modular tensor categories, and group categories

Classical and quantum Chern-Simons with gauge group U(1)N were classified by Belov and Moore in [BM05]. They studied both ordinary topological quantum field theories as well as spin theories. On the other hand a correspondence is well known between ordinary (2 + 1)-dimensional TQFTs and modular tensor categories. We study group categories and extend them slightly to produce modular tensor categories that correspond to toral Chern-Simons. Group categories have been widely studied in other contexts in the literature [FK93],[Qui99],[JS93],[ENO05],[DGNO07]. The main result is a proof that the associated projective representation of the mapping class group is isomorphic to the one from toral Chern-Simons. We also remark on an algebraic theorem of Nikulin that is used in this paper. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/17795
Date06 September 2012
CreatorsStirling, Spencer
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Formatelectronic
RightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.

Page generated in 0.0013 seconds