Return to search

Neutron Scattering Measurements of Low-Dimensional Quantum Systems

<p> Low dimensional quantum magnets which display a collective singlet ground state and a gap in their magnetic excitation spectrum provide a framework for much exotic phase behavior in new materials, with high temperature superconductivity being the best appreciated example. Neutron scattering techniques can be applied to study a wide variety of problems in condensed matter physics. These techniques are particularly useful as applied to understanding the magnetic properties of quantum magnets that display exotic phases.</p> <p> SrCu2(BO3)2, is a rare example of a two-dimensional quantum magnet for which an exact theoretical solution describing its ground state is known to be a collective singlet. Previous high resolution neutron scattering measurements identified the most prominent features of the spin excitation spectrum in SrCu2(BO3)2, including the presence of one and two triplet excitations and weak dispersion characteristic of subleading terms in the spin Hamiltonian.</p> <p> The resemblance between the spin gap behavior in the Mott insulator
SrCu2(BO3)2 and that associated with high temperature superconductors motivated the consideration of the significance of doping in order to understand the properties of this quantum magnetic system. For this reason, a series of neutron scattering studies on doped SrCu2(BO3)2 were initiated.</p> <p> These series of investigations began with the performance of neutron scattering measurements on a SrCu(2-x)Mgx(BO3)2 single crystal in order to introduce magnetic vacancies to the system. These results revealed the presence of new spin excitations within the singlet-triplet gap of this system. Application of a magnetic field induces Zeeman-split states associated with un-paired spins which exist as a consequence of doping with quenched non-magnetic impurities. Additional substantial broadening of both the one and two triplet excitations is observed in the doped system as compared to the pure system. Theoretical calculations are shown to qualitatively account for these features.</p> <p> These studies were extended to neutron scattering measurements on
Sr(1-x)LaxCu2(BO3)2, with an aim of introducing charged carriers into this system. The broadening of the one and two triplet excitations is observed and compared to the thermally induced finite lifetime of the pure system. The temperature dependence of this broadening in Sr(1-x)LaxCu2(BO3)2 is different compared to that observed in both SrCu2(BO3)2 and SrCu(2-x)Mgx(BO3)2.</p> <p> It has also been suggested that there is a relation between the spin-lattice interaction in SrCu2(BO3)2 and the magnetic dynamics at low temperatures and high magnetic fields. For this reason there has been increased interest in the study of the crystalline structure and vibrational modes of SrCu2(BO3)2. In order to investigate the role of the lattice in the formation of the singlet ground state in SrCu2(BO3)2, a series of low and high energy neutron scattering measurements were carried out on this system to study both the crystalline structure as well as the normal modes of vibration of the lattice, the transverse acoustic and optical phonons. Transverse acoustic phonons with energies comparable to and higher than the onset of the two triplet continuum show substantially increased lifetimes on entering the singlet ground state below ~ 10 K. This may indicate the removal of the decay channel for the phonons due to the gapping of the spin excitation spectrum in SrCu2(BO3)2 at low temperatures. In high energy inelastic neutron scattering we observe broadening of optic phonons in the ~ 52 to 65 meV region on entering the low temperature singlet ground state.</p> <p> Additionally, the magnetic properties of CuMoO4, which is a triclinic quantum magnet system based on S=1/2 moments at the Cu2+ site, were studied using elastic and inelastic neutron scattering experiments. This material exhibits a first order structural phase transition at ~ 190 K as well as a magnetic phase transition at ~ 1.75 K. We were primarily interested in the low temperature magnetic properties of this material. Magnetization and heat capacity measurements as well as elastic and inelastic neutron scattering measurements were conducted on this system within the low temperature ordered phase. These studies confirm that this material has a magnetic phase transition at ~ 1.7 K. Neutron scattering results indicate that this magnetically ordered phase is characterized by a doubling of the a axis. Inelastic neutron scattering measurements revealed a gapped magnetic excitation spectrum in zero magnetic field, which could be filled in by the application of magnetic fields approaching 7 T.</p> / Thesis / Doctor of Philosophy (PhD)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/17312
Date January 2009
CreatorsHaravifard, Sara
ContributorsGaulin, Bruce D., Physics
Source SetsMcMaster University
Languageen_US
Detected LanguageEnglish
TypeThesis

Page generated in 0.0012 seconds