Return to search

Existência e unicidade de soluções globais suaves para a equação quase-geostrófica crítica / Existence and uniqueness of smooth global solutions for the critical quasi-geostrophic equation

Orientador: Lucas Catão de Freitas Ferreira / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T19:31:34Z (GMT). No. of bitstreams: 1
Moitinho_ValterVictorCerqueira_M.pdf: 1171427 bytes, checksum: 9207703fa3477244cb0e004220ae2827 (MD5)
Previous issue date: 2015 / Resumo: Nesta dissertação, estudamos o problema de existência de soluções globais suaves para a equação quase-geostrófica em R2 (2DQG) com condições periódicas e no caso de valor crítico para a viscosidade fracionária. Esta equação aparece em estudos de alguns fluidos geofísicos que apresentam altas velocidades de rotação. De um ponto de vista dimensional, a equação é considerada um análogo em 2D das equações de Navier-Stokes em 3D. Primeiramente, estudamos a teoria de soluções fracas com dados iniciais em L2 via o método de Galerkin. Depois mostramos um princípio do máximo em espaços Lp e investigamos a regularidade de soluções para tempos pequenos e dados iniciais nos espaços de Sobolev Hs com s > 1. Finalmente, mostramos que a solução suave localmente no tempo de fato existe globalmente e é suave para todo tempo. Esta dissertação é baseada na Tese de Doutorado de Resnick [36] e no recente trabalho de Kiselev, Narazov e Volberg [33] / Abstract: In this dissertation, we study existence of smooth global solutions for the quasi-geostrophic equation in R2 (2DQG) with periodic conditions and critical value for the fractional viscosity. This equation appears in studies of some geophysical fluids that present high rotational speed. Dimensionally speaking, the equation is the analogue in 2D of the Navier-Stokes equations in 3D. First, we study the theory of weak solutions with initial data in L2 via the Galerkin method. After we show a maximum principle in Lp spaces and investigate regularity of solutions for small times and initial data in Sobolev spaces Hs with s > 1. Finally, we show that local-in-time smooth solutions are indeed global ones. This dissertation is based on the PhD thesis of Resnick [36] and recent work of Kiselev, Narazov e Volberg [33] / Mestrado / Matematica / Mestre em Matemática

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unicamp.br:REPOSIP/307594
Date26 August 2018
CreatorsMoitinho, Valter Victor Cerqueira, 1991-
ContributorsUNIVERSIDADE ESTADUAL DE CAMPINAS, Ferreira, Lucas Catão de Freitas, 1977-, Calsavara, Bianca Morelli Rodolfo, Madeira, Gustavo Ferron
Publisher[s.n.], Universidade Estadual de Campinas. Instituto de Matemática, Estatística e Computação Científica, Programa de Pós-Graduação em Matemática
Source SetsIBICT Brazilian ETDs
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Format62 f. : il., application/pdf
Sourcereponame:Repositório Institucional da Unicamp, instname:Universidade Estadual de Campinas, instacron:UNICAMP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0018 seconds