Die Querkrafttragfähigkeit eines Bauteils kann durch verschiedene Maßnahmen gesteigert werden. Zu den weltweit anerkannten Verfahren gehört das oberflächige Aufkleben von Bewehrungen aus Stahl oder Faserverbundkunststoffen. Der textilbewehrte Feinbeton hingegen ist eine noch weitgehend unbekannte Alternative. Es fehlen ebenso systematische Untersuchungen zum Tragverhalten einer solchen Querkraftverstärkung wie geeignete Bemessungsmodelle.
Ziel der vorliegenden Arbeit war es, die Möglichkeiten einer textilbewehrten Querkraftverstärkung zu analysieren. An Stahlbetonbalken unterschiedlicher Querschnittsgeometrie wurden experimentelle Untersuchungen durchgeführt, die Aufschluss über die Wirkung der Verstärkung sowie typische Versagenszustände geben.
Die für die Querkrafttragfähigkeit entscheidenden Verformungen des Steges wurden durch photogrammetrische Messungen erfasst. Der Vergleich der verstärkten und unverstärkten Probekörper verdeutlicht signifikante Unterschiede. Bei den verstärkten Probekörpern ist die Stauchung des gemittelten Hauptdehnungszustandes steiler geneigt als bei den unverstärkten Probekörpern. Die steilere Neigung der Hauptstauchung, aufgrund der aufgebrachten Verstärkung, hat nach der rechnerischen Tragfähigkeit des Fachwerkmodells zur Folge, dass weniger Lasten über die Stahlbügelbewehrung abgetragen werden können. Die so fehlende Tragfähigkeit gegenüber dem unverstärkten Bauteil muss die Verstärkungsschicht zunächst ausgleichen, bevor eine Traglaststeigerung möglich ist.
Als zweite wesentliche Wirkung begrenzt die textile Bewehrung die Breite der auftretenden Schubrisse wie anhand der gemessenen Rissbreiten nachgewiesen werden konnte. Die Verstärkung verzögert auftretende Schubrisse und begrenzt deren Breite und Ausdehnung. Ein Versagen der Biegedruckzone durch Schubdruckbruch tritt so erst bei deutlich höheren Lasten ein als es bei unverstärkten Stahlbetonbauteilen der Fall ist.
Nach dem herkömmlichen Fachwerkmodell der Stahlbügelbewehrung sind die Stegbewehrungen eines Bauteils in der Biegedruckzone zu verankern. Externe Querkraftverstärkungen können aber nur selten oder mit hohem Aufwand bis zur Höhe der Biegedruckzone geführt werden. Meist behindern anschließende Querschnittsteile die Erreichbarkeit zur Druckzone.
Für die experimentellen Untersuchungen wurden die Probekörper mit einer U-förmigen Verstärkung außerhalb der rechnerischen Biegedruckzone versehen. Die geprüften Tragfähigkeiten lagen dennoch deutlich über der Tragfähigkeit der unverstärkten Referenz. Eine Verankerung der Verstärkung am Steg des Bauteils scheint demnach möglich.
Das Kräftegleichgewicht einer solchen Verankerung wurde mit einem neu entwickelten Stabwerkmodell nachgewiesen. Die Eignung des Modells zur Berechnung der Tragfähigkeit der Verstärkung wurde durch Nachrechnung der eigenen Versuche geprüft.
Zusätzliche konstruktive Maßnahmen zur Verankerung der Verstärkung wurden an separaten Verbundprobekörpern untersucht. Es wurden verschiedene Verankerungsmittel geprüft, die durch Querdruck die Tragfähigkeit der Verbundfuge von Alt- und Feinbeton erhöhen. Die besten Ergebnisse erreichten Verankerungen mit vorgespannten Ankern. Die Steigerung der Verbundtragfähigkeit ist allerdings gering, da die notwendigen Bohrungen für die Anker die wirksame Fläche der textilen Bewehrung schwächen. / Shear resistance of structural members can be increased by different measures. So far only reinforcements from steel or fibre-reinforced plastic pasted on the surface have been acknowledged worldwide. Textile reinforced fine grained concrete, however, is still mostly an unknown option. Systematic research into the load bearing behaviour of this kind of shear strengthening as well as qualified design rules are missing.
It is the aim of this thesis to analyse the possibilities of textile reinforced shear strengthening. Experimental investigations on RC beams with different cross sectional geometries provided information about the strengthening effect as well as common failure modes.
The web deformations, which are crucial for the shear resistance, were recorded by photogrammetric measurements. A comparison of strengthened and unstrengthened specimen demonstrates significant differences. In case of the strengthened sample, the compressive strain of the averaged principle strain condition has a steeper inclination than in case of the unstrengthened specimen. This steeper inclination ensues from the applied strengthening. According to the calculated load-bearing capacity of the truss model, the steeper inclination results in less loads being removed by the steel stirrup reinforcement. Compared to the unstrengthened structural member, this lack in the load-bearing capacity has to be evened out by the strengthening layer before an increase in the load carrying capacity is possible.
Secondly, the textile reinforcement limits the width of the occurring shear cracks. This could be proven by measuring the crack-width. The strengthening delays occurring shear cracks and restricts their widths and extension. Consequently, failure of the flexural compression zone induced by shear cracks only occurs under significantly higher loads than in unstrengthened RC members.
In the traditional truss model of the steel stirrup reinforcement, the web reinforcements of a structural member have to be anchored in the flexural compression zone. However, external shear strengthening can be pulled up to the height of the flexural compression zone only rarely or with great effort. Often connected parts of the cross section prevent access to the compression zone.
For the purpose of the experimental analysis, the specimens were fit with a U-shaped strengthening layer outside the calculated flexural compression zone. Nevertheless, the measured load-bearing capacities were distinctly higher than the load-bearing capacity of the unstrengthened reference beam. Consequently, anchoring the strengthening at the specimen’s web appears to be possible.
The force balance of such an anchorage could be proved with the help of a newly developed strut-and-tie-model. The applicability of the model for calculating the load bearing capacity of the strengthening was checked by recalculating the corresponding test results.
Additional structural measures for anchoring the strengthening were tested on separate bond specimens. Furthermore, various anchorage materials which increase the load carrying capacity of the interface between old and fine grained concrete through transverse pressure were tested. The best results could be achieved with pre-stressed anchorages. However, the resulting load-bearing capacity’s increase was only slight because the drill holes required for the anchors reduce the effective area of the textile reinforcement.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-82198 |
Date | 17 January 2012 |
Creators | Brückner, Anett |
Contributors | Technische Universität Dresden, Fakultät Bauingenieurwesen, Prof. Dr.-Ing. Dr.-Ing. E. h. Manfred Curbach, Prof. Dr.-Ing. Dr.-Ing. E. h. Manfred Curbach, Prof. Dr.-Ing. habil. Dr.-Ing. E. h. Konrad Zilch |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | deu |
Detected Language | English |
Type | doc-type:doctoralThesis |
Page generated in 0.0023 seconds