Return to search

Query evaluation with constant delay

This thesis is concentrated around the problem of query evaluation. Given a query q and a database D it is to compute the set q(D) of all tuples in the output of q on D. However, the set q(D) may be larger than the database itself as it can have a size of the form n^l where n is the size of the database and l the arity of the query. It can therefore require too many of the available resources to compute it entirely. The main focus of this thesis is a particular solution to this problem: a scenario where in stead of just computing, we are interested in enumerating q(D) with constant delay. Intuitively, this means that there is a two-phase algorithm working as follows: a preprocessing phase that works in time linear in the size of the database, followed by an enumeration phase outputting one by one all the elements of q(D) with a constant delay (which is independent from the size of the database) between any two consecutive outputs. Additionally, four more problems related to enumeration are also considered in the thesis. These are model-checking (where the query q is boolean), counting (where one wants to compute just the size |q(D)| of the output set), testing (where one is interested in an efficient test for whether a given tuple belongs to the output of the query or not) and j-th solution (where, one wants to be able to directly access the j-th element of q(D)). The results presented in the thesis address the above problems with respect to: - first-order queries over the classes of structures with bounded degree, - monadic second-order queries over the classes of structures with bounded treewidth, - first-order queries over the classes of structures with bounded expansion.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00919786
Date16 September 2013
CreatorsKazana, Wojciech
PublisherÉcole normale supérieure de Cachan - ENS Cachan
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageEnglish
TypePhD thesis

Page generated in 0.0024 seconds