Made available in DSpace on 2016-12-23T14:33:48Z (GMT). No. of bitstreams: 1
Marta Talitha Carvalho Freire De Amorim.pdf: 1718108 bytes, checksum: 60eb34219545d0ffacecb5e5e80f2ea7 (MD5)
Previous issue date: 2012-08-31 / When people want to learn a concept, the most common way is to use a search engine like: Google, Yahoo, Bing, among others. A natural language query is submitted to a search tool and which returns a lot of pages related to the concept studied. Usually the returned pages are listed and organized mainly based on the combination of keywords instead of using the interpretation and relevance of the terms found. The user must have read a lot of pages and selects the most appropriate to his needs. This kind of behavior takes time and focus on user-learner is dispersed to his goal. The use of intelligent systems that support the clarification of doubt has intent to solve this problem, presenting the most accurate answers to questions or sentences in natural language. Examples clarification of doubt systems are: question-answer system, help-desk intelligent among others. This work uses an architectural approach to a question answering system based on three steps: question analysis, selection and extraction of the answer and answer generation. One of the merits of this architecture is to use techniques that complement each other, such as ontologies, information retrieval techniques and a knowledge base written in AIML language to extract the answer quickly. The focus of this work is to answer questions WH-question (What, Who, When, Where, What, Who) of the English language / Quando as pessoas querem aprender algum conceito, a forma mais comum é usar uma ferramenta de pesquisa, como: Google, Yahoo, Bing, dentre outros. Uma consulta em linguagem natural é submetida para uma ferramenta e a pesquisa retorna uma grande quantidade de páginas relacionadas ao conceito pesquisado. Geralmente as páginas retornadas são listadas e organizadas principalmente baseando-se na combinação de palavras chaves ao invés de utilizar a interpretação e a relevância dos termos consultados. O usuário terá que ler uma grande quantidade de páginas e selecionar a mais apropriada a sua necessidade. Esse tipo de comportamento consome tempo e o foco do usuário-aprendiz é disperso do seu objetivo. A utilização de um sistema inteligente que apoie o esclarecimento de dúvidas pretende resolver esse problema, apresentando as respostas mais precisas ou frases para as perguntas em linguagem natural. Exemplos de sistemas de esclarecimento de dúvidas são: sistema de pergunta-resposta, help-desk inteligentes, entre outros. Este trabalho utiliza uma abordagem arquitetônica para um sistema de pergunta-resposta baseado em três passos: análise da pergunta, seleção e extração da resposta e geração da resposta. Um dos méritos dessa arquitetura é utilizar técnicas que se complementam, tais como: ontologias, técnicas de recuperação de informação e uma base de conhecimento escrita em linguagem AIML para extrair a resposta de forma rápida. O foco deste trabalho é responder perguntas WH-question (O que, Quem, Quando, Onde, Quais, Quem) da língua inglesa
Identifer | oai:union.ndltd.org:IBICT/oai:dspace2.ufes.br:10/6421 |
Date | 31 August 2012 |
Creators | Amorim, Marta Talitha Carvalho Freire de |
Contributors | Cury, Davidson, Tavares, Orivaldo de Lira, Direne, Alexandre Ibrahim, Menezes, Credine Silva de |
Publisher | Universidade Federal do Espírito Santo, Programa de Pós-Graduação em Informática, UFES, BR, Ciência da Computação |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | text |
Source | reponame:Repositório Institucional da UFES, instname:Universidade Federal do Espírito Santo, instacron:UFES |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds