Return to search

Évolution de schémas dans les entrepôts de données : mise à jour de hiérarchies de dimension pour la personnalisation des analyses

Cette thèse a été réalisée en collaboration avec l'établissement bancaire LCL-Le Crédit Lyonnais. Elle s'inscrit dans le domaine des entrepôts de données. Ces derniers constituent un élément fondamental de l'architecture décisionnelle, sur lesquels reposent des outils permettant de répondre à des besoins d'analyse. Or, l'émergence de nouveaux besoins d'analyse individuels fait apparaître la nécessité d'une personnalisation des analyses. Pour permettre cette personnalisation, nous proposons une solution basée sur une évolution du schéma de l'entrepôt guidée par les utilisateurs. Il s'agit en effet de recueillir les connaissances de l'utilisateur et de les intégrer dans l'entrepôt de données afin de créer de nouveaux axes d'analyse. Cette solution s'appuie sur la définition d'un modèle formel d'entrepôt de données évolutif, basé sur des règles "si-alors", que nous appelons règles d'agrégation, qui permettent de représenter les connaissances utilisateurs. Notre modèle d'entrepôt évolutif est soutenu par une architecture qui place l'utilisateur au cœur du processus d'évolution du schéma de l'entrepôt. Nous nous sommes par ailleurs intéressés à l'évaluation de la performance de notre modèle d'entrepôt de données évolutif. L'évaluation de performances se base généralement sur une charge (ensemble de requêtes). Dans le contexte évolutif dans lequel nous nous plaçons, nous proposons alors une méthode de mise à jour incrémentale d'une charge donnée en répercutant l'évolution de schéma subie par l'entrepôt. Pour valider nos différentes contributions, nous avons développé la plateforme WEDriK (data Warehouse Evolution Driven by Knowledge).

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00269037
Date12 December 2007
CreatorsFavre, Cécile
PublisherUniversité Lumière - Lyon II
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0017 seconds