Return to search

Use of cellular impedance to characterize ligand functional selectivity at G protein-coupled receptors

Les récepteurs couplés aux protéines G (RCPGs) représentent la plus grande famille de cibles thérapeutiques pour le traitement d’une panoplie de pathologies humaines. Bien que plusieurs décennies de recherche aient permis de façonner nos connaissances sur ces protéines membranaires, notre compréhension des déterminants moléculaires de leur activité signalétique reste encore limitée. De ces domaines de recherche, une avancée récente a mis à jour un nouveau phénomène, appelé sélectivité fonctionnelle des ligands, qui a bouleversé les paradigmes décrivant leu fonctionnement de ces récepteurs. Ce concept émane d’observations montrant que l’activité pharmacologique de certains ligands n’est pas nécessairement conservée sur tout le répertoire signalétiques connu du récepteur et peu se restreindre à l'activation sélective d’un sous-groupe de voies de signalisation.Ce nouveau modèle pharmacologique de l'activation des RCPG ouvre de nouvelles possibilités pour la découverte de médicaments plus efficace et sûr, ciblant les RCPGs. En effet, il permet la conception de molécules modulant spécifiquement les voies signalétiques d’intérêt thérapeutique, sans engager les autres voies qui pourraient mener à des effets secondaires indésirables ou de la tolérance.
Cette thèse décrit l'utilisation d'une nouvelle approche sans marquage, basée sur la mesure du changement l'impédance cellulaire. Par la mesure des changements cellulaires, comme la morphologie, l’adhésion et/ou la redistribution des macromolécules, cette approche permet de mesurer de façon simultanée l'activité de plusieurs voies de signalisation impliqués dans ces réponses.
Utilisant le récepteur β2-adrénergique (β2AR) comme modèle, nous avons démontré que les variations dans l’impédance cellulaire étaient directement liées à l’activation de multiples voies de signalisation suite à la stimulation du récepteur par son ligand. L’agoniste type du β2AR, l’isoprotérénol, s’est avéré induire une réponse d’impédance dose-dépendante constituée, dans le temps, de plusieurs caractéristiques distinctes pouvant être bloquées de façon compétitive par l’antagoniste ICI118,551 Par l’utilisation d’inhibiteurs sélectifs, nous avons été en mesure de déterminer la contribution de plusieurs voies signalétiques canoniques, comme les voies dépendantes de Gs et Gi, la production d’AMPc et l’activation de ERK1/2, sur ces changements. De plus, la dissection de la réponse d’impédance a permis d’identifier une nouvelle voie de mobilisation du Ca2+ contribuant à la réponse globale des changements initiés par la stimulation du β2AR. Dans une autre étude, nous avons rapporté que la réponse calcique induite par le β2AR serait attribuable à une transactivation Gs-dépendant du récepteur purinergique P2Y11, lui-même couplé à la protéine Gq. La mesure d’impédance permettant de distinguer et de décrire une pléiade d’activités signalétiques, nous avons émis l’hypothèse que des ligands arborant des profils signalétiques différents généreraient des réponses d’impédance distinctes. Le criblage d’une librairie de ligands spécifiques au β2AR a révélé une grande variété de signatures d’impédance. Grâce au développement d’une approche computationnelle innovatrice, nous avons été en mesure de regrouper ces signatures en cinq classes de composés, un regroupement qui s’est avéré hautement corrélé avec le profil signalétique des différents ligands.
Nous avons ensuite combiné le criblage de composés par impédance avec l’utilisation d’inhibiteurs sélectifs de voies signalétiques afin d’augmenter la résolution du regroupement. En évaluant l’impact d’une voie signalétique donnée sur la signature d’impédance, nous avons été en mesure de révéler une plus grande variété de textures parmi les ligands. De plus, cette méthode s’est avérée efficace pour prédire le profil signalétique d’une librairie de composés non caractérisés, ciblant le β2AR. Ces travaux ont mené à l’élaboration d’une méthode permettant d’exprimer visuellement la sélectivité fonctionnelle de ligands et ont révélé de nouvelles classes de composés pour ce récepteur. Ces nouvelles classes de composés ont ensuite été testées sur des cardiomyocytes humains, confirmant que les composés regroupés dans différentes classes produisent des effets distincts sur la contractilité de ces cellules.
Globalement, ces travaux démontrent la pertinence de l’utilisation de l’impédance cellulaire pour une évaluation précise des différences fonctionnelles parmi les composés ciblant les RCPGs. En fournissant une représentation pluridimensionnelle de la signalisation émanant des RCPGs à l’aide d’un seul essai ne requérant pas de marquage, les signatures d’impédance représentent une stratégie simple et innovante pour l’évaluation de la fonctionnalité sélective des ligands. Cette méthode pourrait être d’une grande utilité dans le processus de découverte de nouveaux médicaments. / G protein-coupled receptors (GPCRs) represent the largest family of therapeutic targets for the treatment of a wide variety of human pathologies. Decades of research have provided an extensive base of knowledge about these fascinating membrane proteins, yet significant advancements in the understanding of the structural and functional details of these important drug targets continue to accumulate to this day. One such area of research in particular that has caused a paradigm shift in the way we conceptualize receptor function is a recently identified phenomenon known as ligand functional selectivity. This concept refers to the numerous observations that the pharmacological activity of a ligand at a given receptor is not always conserved over all possible signalling events engaged by the receptor, often resulting in the selectivity of a ligand to modulate only a subset of the receptor’s signalling repertoire. This model of receptor activity reveals exciting new possibilities for the discovery of safer and more efficacious drugs targeting GPCRs; through the design of drugs specifically targeting the pathway of therapeutic interest without modulating other, uninvolved pathways which could lead to tolerance or adverse effects.
This thesis will describe the use of a novel, label-free technique based on cellular impedance to further characterize ligand functional selectivity at GPCRs. By measuring changes in higher-order cellular responses, such as changes in morphology, adhesion and redistribution of macromolecules, this approach provides a means to simultaneously measure the activity of multiple signalling pathways converging on these responses.
Using the β2-adrenergic receptor (β2AR) as a model system, we have demonstrated that changes in cellular impedance reflect the activity of multiple signalling events elicited following ligand stimulation of the receptor. Isoproterenol, the prototypical agonist of the β2AR, was found to elicit a dose-dependent impedance response consisting of multiple, discrete features over time, which could be blocked in a competitive manner by the antagonist ICI118,551. Using pathway-selective inhibitors, we were able to dissect the contribution of many of the canonical pathways activated by the β2AR, including Gs- and Gi-dependent signalling, as well as cAMP production and ERK1/2 activation. Furthermore, through the pharmacological dissection of this impedance response, we identified a novel Ca2+ mobilization pathway that contributes to the overall cellular response to β2AR stimulation. In a separate study of the mechanism generating this β2AR-promoted Ca2+ response, we revealed a Gs-dependent transactivation mechanism of the Gq-coupled P2Y11 purinergic receptor. Given the ability of impedance measurements to capture this pleiotropic signalling activity, we then reasoned that ligands exhibiting different signalling profiles should generate distinct impedance signatures. In screening a library of functionally selective compounds targeting the β2AR, we obtained a wide variety of impedance signatures. Through the development of a novel computational approach, we were able to cluster these signatures into five distinct compounds classes, which were highly correlated with signalling profiles of the ligands.
In an extension of this approach, we then combined impedance screening with the use of pathway-selective inhibitors to determine if this would provide greater resolution in distinguishing among functionally distinct compounds. By assessing if and how a given signalling pathway contributes to a ligand’s impedance signature, we were able to reveal even more texture among ligands targeting the β2AR. Furthermore, this approach was found to be predictive of the signalling profiles of a library of uncharacterized compounds for the β2AR. This work led to the development of a visualization method to express ligand functional selectivity and revealed potentially novel classes of compounds for the receptor. These compound classes were then validated in human cardiomyocytes, confirming that compounds clustering into different classes produced distinct effects on cardiomyocyte contractility.
Altogether, this work demonstrates the ability of cellular impedance to accurately measure functional differences among compounds targeting GPCRs. In providing a representation of the pluridimensionality of GPCR signalling using a single, label-free assay, impedance profiling represents an innovative strategy to assess ligand functional selectivity and may be a valuable addition to future drug discovery campaigns.

Identiferoai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/11055
Date12 1900
CreatorsStallaert, Wayne
ContributorsBouvier, Michel
Source SetsUniversité de Montréal
LanguageEnglish
Detected LanguageFrench
TypeThèse ou Mémoire numérique / Electronic Thesis or Dissertation

Page generated in 0.0038 seconds