Return to search

Importance de la S-nitrosation des récepteurs cérébrovasculaires de l’angiotensine II / Importance of S-nitrosation of cerebrovascular angiotensin II receptors

Les accidents vasculaires cérébraux sont la deuxième cause de mortalité dans le monde, le développement de nouvelles thérapeutiques est donc urgent. Deux acteurs jouent un rôle majeur dans la régulation de la circulation cérébrale : le monoxyde d’azote (NO) et le système rénine angiotensine (SRA). Le chapitre 1 de ce manuscrit s’intéresse tout d’abord au NO, son rôle physiologique et ses voies de signalisation. Nous présentons les donneurs de NO disponibles sur le marché ainsi que ceux en développement. La bucillamine dinitrosée, développée dans notre laboratoire, fait l’objet d’une évaluation in vitro et in vivo. La deuxième partie de l’introduction s’intéresse au SRA, en rappelant son rôle prépondérant dans le maintien de la pression artérielle et de la régulation cérébrovasculaire. Nous présentons les récepteurs de l’angiotensine II (AngII), AT1 et AT2, responsables respectivement d’une vasoconstriction et d’une vasodilatation des artères cérébrales. Enfin la dernière partie présente la régulation des récepteurs de l’AngII par le NO, en particulier via la S-nitrosation du récepteur, la liaison d’un groupement NO sur une fonction thiol d’un résidu cystéine. Nous présentons les travaux de Leclerc qui montrent que l’exposition de cellules surexprimant le récepteur AT1 à un donneur de NO entraine une diminution d’affinité de l’AngII pour AT1 (Leclerc et al., 2006). Le chapitre 2 est consacré aux études expérimentales. L’objectif des travaux présentés dans cette thèse est d’étudier l’importance de la S-nitrosation des récepteurs de l’AngII au niveau cérébrovasculaire. Tout d’abord nous abordons la problématique actuelle concernant l’aspécificité des anticorps anti-AT1. Nous montrons que le nouvel anticorps monoclonal anti-AT1, censé être plus spécifique, ne reconnaît pas AT1 en western blot et en immunofluorescence, rendant donc son utilisation impossible. Nous faisons ensuite la démonstration pharmacologique des effets de la S-nitrosation sur les récepteurs de l’AngII. Nous montrons que l’exposition à un donneur de NO (S-nitrosoglutathion ou nitroprussiate de sodium) abolit spécifiquement la vasoconstriction médiée par AT1 comparé à d’autres vasoconstricteurs partageant ou non sa voie de signalisation. De plus cette exposition abolit aussi le tonus myogénique AT1-dépendant indépendant de la stimulation par l’AngII suggérant que l’altération survient sur le récepteur lui-même. Nous montrons par ailleurs que cet effet (i) ne dépend pas du NO endogène, (ii) se fait par une S-nitrosation plutôt que par la voie de la GMPc/GCs. Enfin nous étudions l’internalisation du récepteur par cytométrie en flux, sur un modèle hétérologue d’expression AT1. Nos résultats montrent que le GSNO ne modifie pas la localisation d’AT1 à la membrane et n’empêche pas son internalisation, indiquant que la voie ß-arrestine n’est pas impactée par la nitrosation.L’ensemble de ces résultats permet d’établir que la S-nitrosation d’AT1 constitue une cible thérapeutique potentiellement intéressante dans les AVC, où l’augmentation de la vasoconstriction médiée par AT1 est délétère / Stroke is the second leading cause of death worldwide, the development of new therapeutics is thus urgent. Two actors play a major role in the regulation of cerebral circulation: nitric oxide (NO) and the renin-angiotensin system (RAS). The first chapter of this manuscript focuses on NO, its role and its signaling pathways. We present the available NO donors as well as those in development. Dinitrosobucillamine, a new NO donor developed in our team, is evaluated in vitro and in vivo. The second part of the introduction focuses on RAS and its preponderant role in blood pressure maintenance and cerebrovascular regulation. We present the angiotensin II (AngII) receptors, AT1 and AT2 responsible for vasoconstriction and vasodilation of cerebral arteries, respectively. Finally, the last part presents the regulation of AngII receptors by NO, in particular through S-nitrosation of the receptors, the covalent bound between NO and cysteine residues. We present the work of Leclerc, showing that exposure of cells overexpressing AT1 to NO causes a decrease in AngII affinity for AT1 (Leclerc et al., 2006). The second chapter is devoted to the experimental studies. The objective of this work is to study the importance of AngII receptor S-nitrosation at the cerebrovascular level. First, we address the current problematic concerning the nonspecificity of anti-AT1 antibodies. We show here that the new monoclonal anti-AT1 antibody, which is supposed to be more specific, does not recognize AT1 in western blot and immunofluorescence, making its use impossible. We then make a pharmacological demonstration of S-nitrosation effects on AngII receptors. We show that exposure to NO donors (S-nitrosoglutathione or sodium nitroprusside) specifically abolishes AT1-mediated vasoconstriction compared to other vasoconstrictors sharing or not its signaling pathway. Moreover, this exposure also abolishes AT1-mediated AngII-independent myogenic tone, suggesting an alteration on the receptor itself. We also show that this effect (i) does not depend on endogenous NO, (ii) is mediated by S-nitrosation rather than by the cGMP/sGC pathway. Finally, we study AT1 internalization by flow cytometry on a heterologous model of AT1 expression. Our results show that GSNO does not alter AT1 cell surface localization and does not prevent its internalization, indicating that the ß-arrestin pathway is not impacted by nitrosation

Identiferoai:union.ndltd.org:theses.fr/2018LORR0067
Date04 July 2018
CreatorsBouressam, Marie Lynda
ContributorsUniversité de Lorraine, Lartaud, Isabelle, Dupuis, François
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0024 seconds