Les récepteurs couplés aux protéines G (RCPG) constituent la plus grande famille de récepteurs transmembranaires. Ils sont impliqués dans une large variété de processus physiologiques et par conséquent ils représentent une cible thérapeutique d'intérêt pour le développement de médicaments. Plusieurs études ont démontré que les RCPGs sont capables d'interagir entre eux pour former des complexes oligomériques. Cependant, leur existence in vivo et leur rôle fonctionnel reste sujet à débats. Afin de mieux appréhender ce phénomène, nous avons utilisé un RCPG de classe C comme modèle d'étude, le récepteur de l'acide γ-aminobutyrique (GABAB), qui est impliqué dans une grande variété de désordres neurologiques et psychiatriques. Son originalité réside dans le fait qu'il est un hétérodimère obligatoire composé de deux sous-unités : GABAB1 et GABAB2 (GB1 et GB2). La liaison de l'agoniste sur GB1 conduit à l'activation de GB2. Au cours de ma thèse, nous avons montré en utilisant une nouvelle approche biophysique basée sur un marquage fluorescent enzymatique appelé Snap-tag que, contrairement aux récepteurs métabotropiques du glutamate, le récepteur GABAB forme des dimères de dimères (tétramères). Cette organisation hétéro-oligomérique est assurée par des contacts stables entre les domaines extracellulaires des sous-unités GB1. De plus, nous avons apporté des données en faveur de l'existence physiologique de cet assemblage en utilisant des membranes de cerveau de rat et de souris. Dans une seconde partie, nous avons souhaité déterminer les conséquences fonctionnelles de cette organisation. Nos résultats suggèrent une efficacité de couplage à la protéine G réduite du récepteur GABAB lorsqu'il est associé en dimères de dimères. Collectivement, nos données rapportent pour la première fois, l'existence de larges complexes allostériques de RCPGs dans le cerveau. / The G-protein coupled receptors (GPCR) constitute the main family of transmembrane receptors. They are involved in many physiological processes and, as a consequence, they represent a therapeutic target of interest for the development of new drugs. Few studies have demonstrated that GPCRs are able to interact with each other to form oligomeric complexes. However, the existence in vivo and the functional interest of these oligomers remain a subject of intense debates. To address this issue, we have used a class C GPCR as a model, the γ-aminobutyrate B receptor (GABAB), which is involved in a wide variety of neurological and psychiatric disorders. This receptor has the particularity to be an obligatory heterodimer composed of two subunits GABAB1 and GABAB2 (GB1 and GB2). Agonist binding on GB1 leads to G-protein activation by GB2. During my thesis, we developed a new biophysical approach based on an enzyme-mediated fluorescent labeling calle d Snap-Tag and showed that, unlike metabotropic glutamate receptors, GABAB forms dimers of dimers (tetramers). This oligo-heterodimers organization is mediated via stable contacts between extracellular domains of GB1 subunits. Furthermore, we brought evidence of the physiological reality of this assembly using rat and mouse brain membranes. Then, we aimed at assessing what would be the functional rational of the GABAB dimer of heterodimers. Our results suggest that the GABAB receptor has a lower G protein-coupling efficacy when associated into dimers of dimers. Altogether, our data report for the first time, the existence of large allosteric GPCR complexes in the brain.
Identifer | oai:union.ndltd.org:theses.fr/2010MON20211 |
Date | 29 November 2010 |
Creators | Comps-Agrar, Laëtitia |
Contributors | Montpellier 2, Pin, Jean-Philippe |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French, English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds