Return to search

Inférence robuste sur les paramètres d'une régression linéaire bayésienne

La robustesse d'une inférence a posteriori face à des valeurs aberrantes est étudiée, dans un cadre de régression linéaire bayésienne. Il est montré que le modèle de régression linéaire simple avec une constante nulle peut être vu comme un problème d'inférence sur des paramètres de position-échelle. Un lien est alors effectué avec la théorie de robustesse de Desgagné (2011). En présence minoritaire de données aberrantes, une convergence en loi des densités a posteriori vers celles excluant les valeurs extrêmes, lorsque celles-ci tendent vers plus ou moins l'infini, est garantie sous une condition relative à des ailes suffisamment relevées de la densité des erreurs. Il est démontré que les estimations par maximum de vraisemblance sont eux aussi robustes. De plus, une nouvelle famille de densités, appelée DL-GEP, est proposée afin de guider l'utilisateur dans une recherche de distributions respectant le critère de robustesse. Les résultats théoriques sont illustrés d'abord à l'aide d'un exemple basé sur des données simulées, puis par une étude de cas s'appuyant sur des données financières, où les considérations pratiques sont abordées.
______________________________________________________________________________
MOTS-CLÉS DE L’AUTEUR : Inférence bayésienne, robustesse, régression linéaire, valeurs aberrantes, paramètres de position-échelle, distributions à ailes relevées, fonctions à variation L-exponentielle, famille de densités DL-GEP.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMUQ.5012
Date01 1900
CreatorsGagnon, Philippe
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Detected LanguageFrench
TypeMémoire accepté, NonPeerReviewed
Formatapplication/pdf
Relationhttp://www.archipel.uqam.ca/5012/

Page generated in 0.0016 seconds