Dans ce mémoire, nous présentons différentes méthodes d'apprentissage statistique qui peuvent être utilisées pour comprendre le code neuronal des fonctions cognitives, en se basant sur des données d'Imagerie par Résonance Magnétique fonctionnelle du cerveau. Plus particulièrement, nous nous intéressons à l'´etude de la localisation spatiale des entités impliquées dans le codage, et leur influence respective dans le processus cognitif. Dans cette étude, nous nous focalisons principalement sur l'étude du cortex visuel. Dans la première partie de ce mémoire, nous introduisons les notions d'architecture fonctionnelle cérébrale, de codage neuronal et d'imagerie fonctionnelle. Nous étudions ensuite les limites de l'approche classique d'analyse des données d'IRMf pour l'étude du codage neuronal, et les différents avantages apportées par une méthode d'analyse récente, l'inférence inverse. Enfin, nous détaillons les méthodes d'apprentissage statistique utilisées dans le cadre de l'inférence inverse, et nous les évaluons sur un jeu de données réelles. Cette étude permet de mettre en évidence certaines limitations des approches classiquement utilisées, que cette thèse vise à résoudre. En particulier, nous nous intéressons à l'intégration de l'information sur la structure spatiale des données, au sein d'approches d'apprentissage statistique. Dans la seconde partie de ce mémoire, nous décrivons les trois principales contributions de cette thèse. Tout d'abord, nous introduisons une approche Bayésienne pour la régularisation parcimonieuse, qui généralise au sein d'un même modèle plusieurs approches de références en régularisation Bayésienne. Ensuite nous proposons un algorithme de coalescence supervisé (supervised clustering) qui tient compte de l 'information spatiale contenue dans les images fonctionnelles. Les cartes de poids résultantes sont facilement interprétables, et cette approche semble être bien adaptée au cas de l'inférence entre sujets. La dernière contribution de cette thèse vise à inclure l'information spatiale au sein d'un modèle de régularisation. Cette régularisation peut alors être utilisée dans un cadre de régression et de classification, et permet d'extraire des ensembles connexes de voxels prédictifs. Cette approche est particulièrement bien adaptée à l'étude de la localisation spatiale du codage neuronal, abordée durant cette thèse.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00550047 |
Date | 15 December 2010 |
Creators | Michel, Vincent |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds