La présence de matière biologique (biofilms) dans les sites de stockage géologique profond, d'éléments toxiques ou encore de l'eau potable des aquifères est maintenant clairement démontrée. Cette biomasse est à l'origine de processus physiques et chimiques qui modifient considérablement la durabilité et la pérennité des sites concernés. Ces processus, principalement de type oxydo-réductif, sont encore mal compris. Ceci est principalement dû aux méthodes d'investigation, principalement macroscopiques, loin de l'échelle micrométrique caractéristique des bactéries. Seules des études, basées sur des méthodes d'investigation locale, peuvent apporter les informations requises. Ainsi, nous avons développé un dispositif expérimental basé sur l'utilisation combinée de la microscopie optique (en transmission), la microscopie à force atomique (AFM) et la microscopie AFM en mode électrique et électrochimique (EC_AFM) afin d'obtenir des informations simultanées sur la topographie de l'échantillon et sur les processus électrochimiques à l'échelle des bactéries. La première étape sensible consistait à utiliser l'AFM sur des échantillons biologiques en milieu liquide: nous présentons ici les résultats de l'imagerie AFM en milieu liquide de plusieurs types de bactéries dans leurs conditions physiologiques naturelles (conditions in vivo). Aucun protocole d'immobilisation, ni chimique ni mécanique, n'a été nécessaire; et pour la première fois, les mouvements de reptation de cyanobactéries Nostoc ont été étudiés par l'AFM. Les études AFM ont permis d'acquérir des données topographiques mais aussi mécaniques : nous avons pu ainsi mesurer le module d'Young, la pression de turgescence de différentes souches bactériennes (Anabaenopsis circularis, Rhodococcus wratislaviensis). Cette étude complète, a révélé que l'imagerie AFM est donc possible sur des espèces vivantes en mouvement. Ces résultats ouvrent une grande fenêtre sur de nouvelles études d'intérêts tels que la formation de biofilms et les propriétés dynamiques de bactéries dans des conditions physiologiques réelles. La deuxième étape délicate était de combiner l'AFM aux mesures optiques et électriques. Nous avons développé un nouveau dispositif expérimental permettant (i) le suivi de l'évolution de la croissance bactérienne par la mesure des propriétés optiques comme la densité optique DO (pour le développement bactérien en volume – milieu planctonique) , ou l'analyse de l'image du substrat par comptage du nombre de bactéries sur la surface de l'échantillon (biofilm), et (ii) les mesures électriques et électrochimiques. L'ensemble de ces résultats sera prochainement appliqué au développement de nouveaux outils de surveillance d'une biodépollution de terrain contaminé par les hydrocarbures, par le suivi in situ et en temps réel de l'activité de bactéries dépolluantes (ECOTECH_BIOPHY ANR). / The presence of biological matter (biofilms) in deep geological sites for storage of, for instance, toxic elements or groundwater in aquifers was clearly proved. That biomass triggers physical and chemical processes which greatly modify the durability and the sustainability of the sites. These processes, mainly from oxidative/reductive reactions, are poorly understood. This is mainly due to the fact that former studies were done at the macroscopic level far away from the micrometric scale where relevant processes induced by bacteria take place. Investigations at microscopic level are needed. Thus, we developed an experimental set-up based on the combined use of optical microscopy (transmission), atomic force microscopy (AFM) and electrical and electro-chemical AFM microscopy (EC_AFM) in order to get simultaneous information on topographic and electro-chemical processes.The first highly sensitive step was to use AFM with biological samples in liquid environment: we present here a study about AFM imaging of living, moving or self-immobilized bacteria, in their genuine physiological liquid medium and in true in vivo conditions. No external immobilization protocol, neither chemical nor mechanical was needed. For the first time, the native gliding movements of Gram negative Nostoc cyanobacteria upon the surface were studied by AFM. AFM height and mechanical stiffness data were simultaneously acquired. From these, mechanical parameters, inner turgor pressure and Young modulus, were derived for different bacterial species (Anabaenopsis circularis, Rhodococcus wratislaviensis). Our study revealed that AFM imaging is thus possible on moving living species. These results open a large window on new studies of both dynamical phenomena of practical and fundamental interests such as the formation of biofilms and dynamic properties of bacteria in real physiological conditions.The second delicate step was to combine AFM and optical measurements with electrical ones. We mounted a new experimental set-up coupling real-time (i) monitoring of optical properties as the optical density (OD) evolution related to bulk bacterial growth in liquid or as the counting of number of bacteria adhering on the surface of the sample as well and (ii) electrical and electrochemical measurements. Furthermore, these results will shortly be applied to the optimized monitoring of the in-situ activity of bacteria consuming oil pollutants, following this way, in real-time, the bioremediation of an oil-contaminated soil (ANR ECOTECH_BIOPHY program).
Identifer | oai:union.ndltd.org:theses.fr/2013MON20146 |
Date | 26 September 2013 |
Creators | Dhahri, Samia |
Contributors | Montpellier 2, Marlière, Christian |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds