Return to search

Biométrie par signaux physiologiques

D'une manière générale, la biométrie a pour objectif d'identifier des individus, notamment à partir de leurs caractéristiques biologiques. Cette pratique tend à remplacer les méthodes traditionnelles de vérification d'identité des individus ; entre autres, les mots de passe et les codes de sécurité. Au quotidien, la biométrie trouve de vastes applications et la recherche de nouvelles méthodes biométriques est d'actualité. L'objectif de notre thèse consiste à développer et d'évaluer de nouvelles modalités biométriques basées sur des caractéristiques infalsifiables, ne pouvant être modifiées volontairement. Dans ce contexte, les signaux physiologiques sont pris en considération. Ainsi, nous avons proposé trois méthodes d'identification biométriques. La première méthode utilise l'électrocardiogramme (ECG) comme signature individuelle, alors que la deuxième est basée sur l'utilisation des signaux électromyographiques (EMG) de surface en réponse à une force d'intensité fixe. Enfin, la dernière technique explorée, utilise les réponses motrices obtenues suite à une stimulation électrique. Ces méthodes consistent d'abord à acquérir les signaux physiologiques chez des personnes saines. Ces signaux sont modélisés par des réseaux d'ondelettes afin d'en extraire des caractéristiques pertinentes. La phase d'identification automatique est effectuée par des réseaux de neurones. D'après les résultats obtenus suite à des expériences effectuées, les méthodes proposées conduisent à des performances d'identification intéressantes. La première méthode, utilisant le signal électro- cardiographique, permet d'obtenir un taux de reconnaissance de 92%, alors que l'identification par les signaux EMG, en réponse à une force d'une intensité fixe, permet une identification correcte à 80%. Enfin, une performance de 95% est obtenue par l'identification par réponse motrice. Pour ces trois techniques explorées, la robustesse par rapport au bruit à été étudiée

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00778089
Date02 May 2011
CreatorsChantaf, Samer, Chantaf, Samer
PublisherUniversité Paris-Est
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0016 seconds