Cette thèse a pour but d’explorer la structure de causalité qui sous-tend les marchés financiers. Elle se concentre sur l’inférence multi-échelle de réseaux de causalité entre investisseurs dans deux bases de données contenant les identifiants des investisseurs. La première partie de cette thèse est consacrée à l’étude de la causalité dans les processus de Hawkes. Ces derniers définissent la façon dont l’activité d’un investisseur (par exemple) dépend du passé; sa version multivariée inclut l’interaction entre séries temporelles, à toutes les échelles. Les résultats principaux de cette partie est que l’estimation avec le maximum de vraisemblance des paramètres du processus changent remarquablement peu lorsque la direction du temps est inversée, tant pour les processus univariés que pour les processus multivariés avec noyaux d’influence mutuelle symétriques, et que la causalité effective de ces processus dépend de leur endogénéité. Cela implique qu’on ne peut pas utiliser ce type de processus pour l’inférence de causalité sans précautions. L’utilisation de tests statistiques permet la différentiation des directions du temps pour des longues données synthétiques. Par contre, l’analyse de données empiriques est plus problématique: il est tout à fait possible de trouver des données financières pour lesquelles la vraisemblance des processus de Hawkes est plus grande si le temps s’écoule en sens inverse. Les processus de Hawkes multivariés avec noyaux d’influence asymétriques ne sont pas affectés par une faible causalité. Il est malheureusement difficile de les calibrer aux actions individuelles des investisseurs présents dans nos bases de données, pour deux raisons. Nous avons soigneusement vérifie que l’activité des investisseurs est hautement non-stationaire et qu’on ne peut pas supposer que leur activité est localement stationaire, faute de données en nombre suffisant, bien que nos bases de données contiennent chacune plus de 1 million de transactions. Ces problèmes sont renforcés par le fait que les noyaux dans les processus de Hawkes codent l’influence mutuelle des investisseurs pour toutes les échelles de temps simultanément. Afin de pallier ce problème, la deuxième partie de cette thèse se concentre sur la causalité entre des échelles de temps spécifiques. Un filtrage supplémentaire est obtenu en réduisant le nombre effectif d’investisseurs grâce aux Réseaux Statistiquement Validés. Ces derniers sont utilisés pour catégoriser les investisseurs, qui sont groupés selon leur degré de la synchronisation de leurs actions (achat, vente, neutre) dans des intervalles déterminés à une échelle temporelle donnée. Cette partie propose une méthode pour l’inférence de réseaux de meneurs et suiveurs déterminés à une échelle de temps donnée dans le passé et à une autre dans le futur. Trois variations de cette méthode sont étudiées. Cette méthode permet de caractériser la causalité d’une façon novatrice. Nous avons comparé l’asymétrie temporelle des actions des investisseurs et celle de la volatilité des prix, et conclure que la structure de causalité des investisseurs est considérablement plus complexe que celle de la volatilité. De façon attendue, les investisseurs institutionnels, dont l’impact sur l’évolution des prix est beaucoup plus grand que celui des clients privés, ont une structure causale proche de celle de la volatilité: en effet, la volatilité, étant une quantité macroscopique, est le résultat d’une aggrégation des comportements de tous les investisseurs, qui fait disparaître la structure causale des investisseurs privés. / This thesis aims to uncover the underlyingcausality structure of financial markets by focusing onthe inference of investor causal networks at multipletimescales in two trader-resolved datasets.The first part of this thesis is devoted to the causal strengthof Hawkes processes. These processes describe in a clearlycausal way how the activity rate of e.g. an investor dependson his past activity rate; its multivariate version alsomakes it possible to include the interactions between theagents, at all time scales. The main result of this part isthat the classical MLE estimation of the process parametersdoes not vary significantly if the arrow of time is reversedin the univariate and symmetric multivariate case.This means that blindly trusting univariate and symmetricmultivariate Hawkes processes to infer causality from datais problematic. In addition, we find a dependency betweenthe level of causality in the process and its endogeneity.For long time series of synthetic data, one can discriminatebetween the forward and backward arrows of time byperforming rigorous statistical tests on the processes, butfor empirical data the situation is much more ambiguous,as it is entirely possible to find a better Hawkes process fitwhen time runs backwards compared to forwards.Asymmetric Hawkes processes do not suffer from veryweak causality. Fitting them to the individual traders’ actionsfound in our datasets is unfortunately not very successfulfor two reasons. We carefully checked that tradersactions in both datasets are highly non-stationary, andthat local stationarity cannot be assumed to hold as thereis simply not enough data, even if each dataset containsabout one million trades. This is also compounded by thefact that Hawkes processes encode the pairwise influenceof traders for all timescales simultaneously.In order to alleviate this problem, the second part ofthis thesis focuses on causality between specific pairs oftimescales. Further filtering is achieved by reducing theeffective number of investors; Statistically Validated Networksare applied to cluster investors into groups basedon the statistically high synchronisation of their actions(buy, sell or neutral) in time intervals of a given timescale.This part then generalizes single-timescale lead-lag SVNsto lead-lag networks between two timescales and introducesthree slightly different methodsThese methods make it possible to characterize causalityin a novel way. We are able to compare the time reversalasymmetry of trader activity and that of price volatility,and conclude that the causal structure of trader activity isconsiderably more complex than that of the volatility for agiven category of traders. Expectedly, institutional traders,whose impact on prices is much larger than that of retailclients, have a causality structure that is closer to that ofvolatility. This is because volatility, being a macroscopicquantity, aggregates the behaviour of all types of traders,thereby hiding the causality structure of minor players.
Identifer | oai:union.ndltd.org:theses.fr/2019SACLC013 |
Date | 07 March 2019 |
Creators | Cordi, Marcus |
Contributors | Université Paris-Saclay (ComUE), Challet, Damien |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English, French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.003 seconds