Les systèmes de courte portée et de détection directe sont le dernier/premier kilomètre de la fourniture des services Internet d'aujourd'hui. Deux cas d'application sont abordés dans cette thèse, l'un concerne l'amélioration des performances des services Internet par la Fibre-To-TheHome ou les réseaux optiques passifs (PONs). L'autre est le radio access network (RAN) pour le fronthaul. Notre objectif pour RAN est de superposer les signaux 5G sur une infrastructure PON. Nous démontrons expérimentalement la génération d'un signal de répartition multiplexée de fréquences orthogonales (OFDM) à bande latérale unique en utilisant un modulateur IQ sur puce basé sur les photoniques au silicium à micro-anneau. Il s'agit d'une solution à coût bas permettant aux PONs d'augmenter les débits de données grâce à l'utilisation d'OFDM. Nous avons généré un signal OFDM à large bande avec un ratio de suppression de bande latérale de plus de 18 dB. Afin de confirmer la robustesse de la dispersion chromatique (CD), nous transmettons le signal généré OFDM SSB dans plus de 20 km de fibre de monomode standard. Aucun fading induit par la CD n'a été observé et le taux d'erreur sur les bits était bon. Nous proposons une solution de photoniques au silicium pour un réseau optique passif afin de mitiger l'interférence de battement signal-signal (SSBI) dans la transmission OFDM, et de récupérer une partie des porteuses de la liaison descendante pour une utilisation dans la liaison montante. Le sous-système recrée les interférences à une entrée du détecteur équilibré ; le signal de données corrompu par SSBI est à la deuxième entrée. L'annulation se produit via la soustraction dans la détection équilibrée. Comme notre solution de photoniques au silicium (SiP) ne peut pas filtrer les signaux idéalement, nous examinons un facteur d'échelle introduit dans la détection équilibrée qui peut balancer les effets de filtrage non idéaux. Nous montrons expérimentalement l'annulation de l'interférence donne de bonnes performances même avec une porteuse faible, soit pour un ratio porteuse/signal ultra bas de 0 dB. Bien que notre solution soit sensible aux effets de la température, notre démonstration expérimentale montre que le réglage de la fréquence résonante peut dériver jusqu'à 12 GHz de la valeur ciblée et présenter toujours de bonnes performances. Nous effectuons des simulations extensives du schéma d'annulation SSBI proposé, et suggérons une diverse conception polarisée pour le sous-système SiP. Nous examinons via la simulation la vulnérabilité à la variation de température et introduisons une nouvelle métrique de performance : Q-facteur minimum garanti. Nous nous servons de cette métrique pour évaluer la robustesse d'annulation SSBI contre la dérive de fréquence induite par les changements de température. Nous maximisons l'efficacité spectrale sous différentes conditions du système en balayant les paramètres de conception contrôlables. Finalement, les résultats de la simulation du système fournissent des indications sur la conception du résonateur micro-anneau, ainsi que sur le choix de la bande de garde et du format de modulation pour obtenir la plus grande efficacité spectrale. Finalement, nous nous concentrons sur la superposition des signaux 5G sur une infrastructure PON pour RAN. Nous expérimentalement validons un sous-système photonique au silicium conçu pour les réseaux optiques passifs avec réutilisation de porteuses et compatibilité radiosur-fibre (RoF) analogique 5G. Le sous-système permet la détection simultanée des signaux RoF et du signal PON transmis dans une seule tranche assignée de longueur d'onde. Tout en maintenant une qualité suffisante de détection des signaux RoF et PON, il n'y a que la puissance minimale de la porteuse qui est extraite pour chaque détection, ce qui conserve ainsi la puissance de la porteuse pour la modulation de liaison montante. Nous réalisons une suppression efficace du signal de liaison descendante en laissant une porteuse propre et forte pour la remodulation. Nous démontrons expérimentalement le signal RoF de liaison montante via un modulateur à micro-anneau. Nous avons détecté avec succès un signal à large bande de 8 GHz et cinq signaux RoF de 125 MHz simultanément. Et deux signaux RoF de 125 MHz sont remodulés sur la même porteuse. Le signal RoF de liaison montante généré est de 13 dB de plus que les signaux de liaison descendante, ce qui indique leur robustesse contre la diaphonie des signaux résiduels de la liaison descendante. / Short reach, direct detection systems are the last/first mile of today's internet service provision. Two use cases are addressed in this thesis, one is for enhancing performance of Internet services on fiber-to-the-home or passive optical networks (PON). The other is radio access networks (RAN) for fronthaul. Our focus for RAN is to overlay 5G signals on a PON infrastructure. We experimentally demonstrate the generation of a single-sideband orthogonal frequency division multiplexed (OFDM) signal using an on-chip silicon photonics microring-based IQ modulator. This is a low cost solution enabling PONs to increase data rates through the use of OFDM. We generated a wideband OFDM signal with over 18 dB sideband suppression ratio. To confirm chromatic dispersion (CD) robustness, we transmit the generated SSB OFDM signal over 20 km of standard single mode fiber. No CD-induced fading was observed and bit error rate was good. We propose a silicon photonics solution for a passive optical network to mitigate signal-signal beat interference (SSBI) in OFDM transmission, and to recuperate a part of the downlink carrier for use in the uplink. The subsystem recreates the interference at one balanced detector input; the data signal corrupted with SSBI is at the second input. Cancellation occurs via subtraction in the balanced detection. As our silicon photonics (SiP) solution cannot filter the signals ideally, we examine a scaling factor to be introduced to the balanced detection that can trade-off the non-ideal filtering effects. We show experimentally that the interference is cancelled, allowing good performance even with a weak carrier, that is, for ultra low carrier to signal ratio of 0 dB. Although our solution is sensitive to temperature effects, our experimental demonstration shows the tuning of the resonant frequency can drift by as much as 12 GHz from the targeted value and still provide good performance. We perform extensive simulations of the proposed SSBI cancellation scheme, and suggest a polarization diverse design for the SiP subsystem. We examine via simulation the vulnerability to temperature variation and introduce a new performance metric: minimum guaranteed Qfactor. We use this metric to evaluate the SSBI cancellation robustness against the frequency drift induced by temperature changes. We maximize the spectral efficiency under different system conditions by sweeping the controllable design parameters. Finally the system simulation results provide guidance on the microring resonator design, as well as choice of guard band and modulation format to achieve the highest spectral efficiency. Finally, we turn to focus on overlay 5G signals on a PON infrastructure for RAN. We experimentally validate a silicon photonic subsystem designed for passive optical networks with carrier reuse and 5G analog radio-over-fiber (RoF) compatibility. The subsystem enables the simultaneous detection of RoF signals and a PON signal transmitted in a single assigned wavelength slot. While maintaining sufficient quality of RoF and PON signal detection, only the minimum carrier power is leached off for each detection, thus conserving carrier power for uplink modulation. We realize effective downlink signal suppression to leave a clean and strong carrier for remodulation. We demonstrate experimentally the RoF uplink signal via a micro ring modulator. We successfully detected an 8 GHz broadband signal and five 125 MHz RoF signals simultaneously. And two 125 MHz radio over fiber signals are remodulated onto the same carrier. The generated uplink RoF signal is 13 dB over the downlink signals, indicating their robustness against the crosstalk from residual downlink signals.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/70587 |
Date | 27 January 2024 |
Creators | Lyu, Mingyang |
Contributors | Rusch, Leslie |
Source Sets | Université Laval |
Language | English |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xix, 73 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0083 seconds