Grâce aux technologies web et mobiles, le partage de données entre utilisateurs a considérablement augmenté au cours des dernières années. Par exemple, les utilisateurs peuvent facilement enregistrer leurs trajectoires durant leurs déplacements quotidiens avec l'utilisation de récepteurs GPS et les mettre en relation avec les trajectoires d'autres utilisateurs. L'analyse des trajectoires des utilisateurs au fil du temps peut révéler des habitudes et préférences. Cette information peut être utilisée pour recommander des contenus à des utilisateurs individuels ou à des groupes d'utilisateurs avec des trajectoires ou préférences similaires. En revanche, l'enregistrement de points GPS génère de grandes quantités de données. Par conséquent, les algorithmes de clustering sont nécessaires pour analyser efficacement ces données. Dans cette thèse, nous nous concentrons sur l'étude des différentes solutions pour analyser les trajectoires, extraire les préférences et identifier les intérêts similaires entre les utilisateurs. Nous proposons un algorithme de clustering de trajectoires GPS. En outre, nous proposons un algorithme de corrélation basée sur les trajectoires des points proches entre deux ou plusieurs utilisateurs. Les résultats finaux ouvrent des perspectives intéressantes pour explorer les applications des réseaux sociaux basés sur la localisation.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00771457 |
Date | 19 October 2012 |
Creators | Braga, Reinaldo |
Publisher | Université de Grenoble |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0104 seconds