Cette thèse traite de deux sujets: la résolubilité forte d'équations différentielles stochastiques à dérive hölderienne et bruit hypoelliptique et la simulation de processus progressifs-rétrogrades découplés de McKean-Vlasov. Dans le premier cas, on montre qu'un système hypoelliptique, composé d'une composante diffusive et d'une composante totalement dégénérée, est fortement résoluble lorsque l'exposant de la régularité Hölder de la dérive par rapport à la composante dégénérée est strictement supérieur à 2/3. Ce travail étend au cadre dégénéré les travaux antérieurs de Zvonkin (1974), Veretennikov (1980) et Krylov et Röckner (2005). L'apparition d'un seuil critique pour l'exposant peut-être vue comme le prix à payer pour la dégénérescence. La preuve repose sur des résultats de régularité de la solution de l'EDP associée, qui est dégénérée, et est basée sur une méthode parametrix. Dans le second cas, on propose un algorithme basé sur les méthodes de cubature pour la simulation de processus progessifs-rétrogrades découplés de McKean-Vlasov apparaissant dans des problèmes de contrôle dans un environnement de type champ moyen. Cet algorithme se divise en deux parties. Une première étape de construction d'un arbre de particules, à dynamique déterministe, approchant la loi de la composante progressive. Cet arbre peut être paramétré de manière à obtenir n'importe quel ordre d'approximation (en terme de pas de discrétisation de l'intervalle). Une seconde étape, conditionnelle à l'arbre, permettant l'approximation de la composante rétrograde. Deux schémas explicites sont proposés permettant un ordre d'approximation de 1 et 2.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00954417 |
Date | 06 December 2013 |
Creators | Chaudru de Raynal, Paul Éric |
Publisher | Université Nice Sophia Antipolis |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0022 seconds