L’électrocardiogramme (ECG) permet de mesurer l’activité électrique du cœur. Il est utilisé pendant les examens d’Imagerie par Résonance Magnétique (IRM) depuis plusieurs décennies pour améliorer la surveillance des patients et synchroniser les acquisitions des images. Néanmoins, cette technique est réalisée en utilisant des dispositifs électroniques avec une bande passante faible et un nombre limité d’électrodes ne permettant pas de fournir un signal de qualité diagnostic. En effet, un ECG diagnostic nécessite une large bande passante (0.05 – 150 Hz) ainsi que 10 électrodes de mesure qui permettent d’acquérir 12 dérivations. L’IRM est caractérisée par un environnement avec un champ magnétique statique intense, des champs électromagnétiques dynamiques à haute fréquence et à basse fréquence. La conception et le développement d’un capteur ECG compatible IRM nécessite de prendre en compte cet environnement afin de réduire les risques d’échauffements du dispositif pendant les séquences d’images et réduire les perturbations sur les signaux mesurés. L’utilisation de dispositifs avec des câbles courts réduit les risques d’échauffement par effet antenne, ce qui garantit la sécurité des patients, mais l’induction de bruit sur les signaux est inévitable. Le travail de thèse a été organisé en cinq parties principales. Les deux premières parties étaient orientées sur l’étude de la littérature et la conception d’un nouveau prototype de capteur avec une large bande passante d’ECG. L’objectif était de développer un dispositif doté d’une puissance de calcul suffisante pour intégrer les algorithmes de traitement du signal développés par le laboratoire IADI, afin d’éliminer le bruit superposé aux signaux. La troisième partie a été consacrée à la construction d’un réseau de capteurs à partir de N capteurs. L’objectif était de multiplier le nombre d’électrodes de mesure pour augmenter la résolution spatiale de l’ECG et reconstruire un ECG 12 dérivations pendant l’examen IRM. La finalité de ce travail est l’imagerie ECG non invasive à partir de cartes de potentiel électrique de surface et à partir de modèles anatomiques de patients obtenus simultanément par IRM. La quatrième partie expose un nouveau procédé de correction en temps réel des signaux ECG à partir d’une acquisition à haute fréquence d’échantillonnage, sur la base du dispositif développé. La cinquième et dernière partie présente une autre application de ce capteur en salle d’électrophysiologie interventionnelle, pendant l’activation d’un système de Navigation Magnétique à distance (NMD) du cathéter, qui génère des perturbations similaires à celles observées en IRM. / The electrocardiogram (ECG) is used to measure heart electrical activity. It has been used during Magnetic Resonance Imaging (MRI) examinations for several decades to improve patient monitoring and synchronize image acquisition. Nevertheless, this technique is performed using electronic devices with a low bandwidth and a limited number of electrodes that do not provide a diagnostic signal quality. Indeed, a diagnostic ECG requires a wide bandwidth (0.05 - 150 Hz) and 10 measuring electrodes that allow 12 leads to be acquired. MRI is characterized by an environment with an intense static magnetic field, high frequency and low frequency dynamic electromagnetic fields. The design and development of an MRI-compatible ECG sensor needs to take into account this environment to reduce the risk of overheating of the device during image sequences and to reduce disturbances on the measured signals. The use of devices with short cables reduces the risk of overheating by antenna effect, which ensures patient safety, but the induction of noise on the signals is inevitable. This thesis is organized in five parts. The first two parts were oriented towards the study of the literature and the design of a new sensor prototype with a broad bandwidth of ECG. The objective was to develop a device with sufficient computing power to integrate the signal processing algorithms developed by the IADI laboratory, to eliminate the noise superimposed on the signals. The third part was dedicated to the construction of a sensor network from N sensors. The goal was to multiply the number of measurement electrodes to increase the spatial resolution of the ECG and reconstruct a 12-lead ECG during MRI examination. The purpose of this work is noninvasive ECG imaging from surface electrical potential maps and from anatomical models of patients obtained simultaneously by MRI. The fourth part presents a new method of real-time correction of ECG signals from a high frequency sampling acquisition, based on the device developed. The fifth and last part presents another application of this sensor in the interventional electrophysiology room, during the activation of a Magnetic Navigation System of the catheter, which generates disturbances similar to those observed in MRI.
Identifer | oai:union.ndltd.org:theses.fr/2019LORR0107 |
Date | 03 September 2019 |
Creators | Dos Reis Sánchez, Jesús Enrique |
Contributors | Université de Lorraine, Felblinger, Jacques, Odille, Freddy |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.003 seconds