Dado o poder agropecuário nacional e sabendo que a pastagem tem papel fundamental na nutrição animal, torna-se primordial o estudo dos mecanismos da digestão ruminal das forragens, para um aproveitamento mais racional das pastagens pelos animais, propiciando uma fermentação ruminal ótima e possibilitando o balanceamento de rações de forma mais adequada. Esta abordagem é possível por meio dos modelos de degradação ruminal, que são classificados como modelos de regressão não lineares. Neste trabalho são abordadas as metodologias clássica e bayesiana para ajustar os modelos que descrevem a cinética de degradação ruminal por meio da técnica de produção de gases. Na abordagem clássica foram considerados os modelos não sigmoidal proposto por Orskov&McDonald (1979), o Logístico proposto por Schofield (1994) e o Gompertz proposto por Lavrencic (1997), considerando a necessidade de fatores autorregressivos de primeira e segunda ordem mediante o teste de razão de verossimilhança (TRV); os modelos foram avaliados por meio dos critérios de Akaike (AIC), coeficiente de determinação ajustado (R2 aj) e quadrado médio residual (QMR). Em uma segunda etapa realizou-se o ajuste do modelo não sigmoidal sem fator autorregressivo utilizando a abordagem bayesiana, em que a condição de convergência das cadeias foi analisada por meio dos critérios de Geweke (1992), Heidelberger&Welch (1993), Raftery& Lewis (1992) e o Erro de Monte Carlo (EMC). Dentre os modelos utilizados, o que melhor se ajustou aos dados analisados foi o modelo não sigmoidal proposto por Orskov e McDonald (1979), sem o fator autorregressivo, obtendo estimativas condizentes com a realidade do fenômeno. Os resultados obtidos por meio da abordagem bayesiana também foram satisfatórios, mostrando que a técnica, apesar de pouco difundida em estudos de degradação ruminal é uma metodologia bastante viável e tem muito a agregar em estudos da área. / Given the national agricultural power and knowing that grazing plays an important role in animal nutrition, it becomes primordial to study the mechanisms of ruminal digestion of forages, for a more rational use of pastures by the animals, providing an optimal rumen fermentation and allowing a more adequate and balanced feed. This approach is possible by using the rumen degradation models, which are classified as non-linear regression models. This essay discusses the classical and Bayesian methods to adjust the models that describe the kinetics of degradation by rumen gas production technique. In the classical approach, the \"Non Sigmoidal models\", proposed by Orskov& McDonald (1979), the \"Logistic\", proposed by Schofield (1994), and \"Gompertz\", proposed by Lavrencic (1997), were considered, taking into account the need for autoregressive factors of first and second order, by the \"likelihood ratio test \" (TRV). These models were evaluated using the Akaike criteria (AIC), the coefficient of determination adjusted (R2aj) and \"the residual average square\" (QMR). In the following stage, the adjustment of the non sigmoidal model without the autoregressive factor were performed, using the Bayesian approach. For these matters, the condition of the convergence of chains was analyzed using Geweke (1992), Heidelberger & Welch (1993), Raftery& Lewis (1992) and Monte Carlo error(EMC) criteria.Among the models used, the one that best settle to the data analyzed was the non sigmoidal model without the autoregressive factor, proposed by Orskov and McDonald (1979), obtaining consistent estimates with the reality of the phenomenon. The results obtained through the Bayesian approach were also satisfactory, showing that the technique, although less diffused in studies of rumen methodology, is very viable and has a lot to add in these area studies.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-25042013-171153 |
Date | 15 March 2013 |
Creators | Souza, Gabriel Batalini de |
Contributors | Savian, Taciana Villela |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0021 seconds