The standards of fracture toughness determination prescribe size requirements for size of test specimens. In cases of limited amount of test material miniature test specimens offer one from the possibilities of fracture toughness evaluation. Because of small loaded volumes in these specimens at the crack tip the loss of constraint occur affecting measured values of fracture toughness. In such cases the size requirements for valid fracture toughness characteristics determination are not fulfilled. These specimens can be even on limits of load range of test devices and handle manipulation by their small dimensions. The important task related to these specimens is, apart from methodology of their preparation and measurement of deformations, the interpretation of measured values of fracture toughness and their possible correction to standard test specimens. Moreover, in the upper shelf region of fracture toughness quantification and interpretation of size effects is still not resolved sufficiently. This thesis is by its aims experimentally computational study focused on evaluation of size effect on fracture toughness in the upper shelf region. The size effect was quantified by testing of miniature and large specimens’ sizes in order to determine J R curves. Two geometries of miniature test specimens, there point bend specimen and CT specimen, were used. The experimental materials were advanced steels developed for applications in nuclear and power industry, Eurofer97 steel and ODS steel MA956. Finite elements analyses of realized tests together with application of micromechanical model of ductile fracture were carried out in order to evaluate stress strain fields at the crack tip in tested specimens from Eurofer97 steel. By comparison of experimental results and numerical simulations of J R curves the mutual dependencies between geometry of specimens and element sizes at the crack tip were derived. On the basis of acquired relationships, the methodology of J R curve prediction for standard specimen size from limited amount of test material was proposed. Main contribution of thesis is description of effect of material’s fracture toughness level on resistance against ductile crack propagation in miniature specimens. For material where significant crack growth occurs after exceeding the limit values of J integral (Eurofer97), the loss of constraint is considerable and highly decreases resistance against tearing. Miniature specimens then show significantly lower J R curves in comparison with standard size specimens. This effect is the opposite to the behaviour of miniature specimens in transition region. In case of material with low toughness, in which significant crack growth occurs in the region of J integral validity (ODS MA956), the effect of constraint loss is small without large impact on resistance against tearing. In such case miniature specimens demonstrate comparable J R curves as specimens of larger sizes. Next important contribution is proposed methodology for prediction of J R curve from small amount of test material using micromechanical modeling.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:234223 |
Creators | Stratil, Luděk |
Contributors | Džugan, Jan, Haušild, Petr, Dlouhý, Ivo |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0032 seconds