Return to search

A comparison of contralateral breast dose from primary breast radiotherapy using different treatment techniques

Breast cancer is the most common cancer among women worldwide. Millions of new breast cancer cases are diagnosed every year, accounting for one-tenth of all new cancer cases. Because of the proof of equivalent efficacy between breast-conserving therapy (BCT) plus radiotherapy and mastectomy, increasing number of patients received breast irradiation during the past three decades, and radiotherapy plays a more and more important role in managing breast cancer. With the advancement of technology, the radiotherapy treatment techniques changed from conventional wedged technique to intensity modulated radiotherapy (IMRT), resulting in an improvement in the dose homogeneity. Regardless of the treatment techniques, peripheral dose to the contralateral breast is inevitable. The possibility of the peripheral dose causing contralateral breast cancer (CBC) has re-attracted the interest. However, the variation of the peripheral dose with different treatment techniques has not been well identified. Thus this study aims to compare the contralateral breast dose from the primary breast irradiation using various radiotherapy treatment techniques and types of shielding.

Six treatment plans by different treatment techniques, including paired physical wedges (PW-P), a lateral physical wedge only(PW-L), paired enhanced dynamic wedges (EDW-P), a lateral enhanced dynamic wedge only(EDW-L), field-in-field tangential opposing (TO-FiF), and inverse-planned intensity modulated radiotherapy (IMRT-IP), were generated using a female Rando phantom. The phantom was treated by all plans, and 15 metal oxide semiconductor field effect transistor(MOSFET)detectors on the surface and inside the contralateral breast were utilized for measuring the contralateral breast dose for each plan. Measurement was repeated with the application of 0.2, 0.3 and 0.5cm lead sheets or 0.5 and 1cm superflab (SF) on the TO-FiF to demonstrate the effect of shielding on the contralateral breast dose.

The measured contralateral breast doses were: 2.05Gy for PW-P, 1.44Gyfor PW-L, 1.51Gyfor EDW-P, 1.52Gyfor EDW-L, 1.25Gyfor TO-FiF, and 1.17Gyfor IMRT-IP, corresponding to 2.35% to 4.11% of total dose. PW-P producedthe highest contralateral breast dose while IMRT-IP producedthe lowest. For the addition of shielding, the doses were: 1.25Gy for no shielding, 0.65Gy for 0.2cm lead, 0.61Gy for 0.3cm lead, 0.49Gy for 0.5cm lead, 0.76Gy for 0.5cm SF, and 0.72Gy for 1cm SF. Lead sheet with 0.5cm thickness most effectively reduced the contralateral breast dose by 60%.All techniques showed that the surface dose was much higher than the dose at depth, and the dose dropped exponentially from the surface to the internal. Low energy radiation constitutes a large portion of the contralateral breast dose, so all types of shielding could decrease the surface dose effectively, but not the internal dose. The radiation-induced CBC risks were estimated to be about 0.77% to 1.36%.
To conclude, it is important that the contralateral breast dose to patients, especially those under 45, is maintained minimal. Therefore, TO-FiF or IMRT-IP are recommended to be the treatment of choices. The used of shielding, either lead or SF, is also advisable. / published_or_final_version / Diagnostic Radiology / Master / Master of Medical Sciences

Identiferoai:union.ndltd.org:HKU/oai:hub.hku.hk:10722/206498
Date January 2014
CreatorsTse, Ka-ho, 謝家豪
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Source SetsHong Kong University Theses
LanguageEnglish
Detected LanguageEnglish
TypePG_Thesis
RightsCreative Commons: Attribution 3.0 Hong Kong License, The author retains all proprietary rights, (such as patent rights) and the right to use in future works.
RelationHKU Theses Online (HKUTO)

Page generated in 0.0016 seconds