Return to search

Octaarginine Labelled 30 nm Gold Nanoparticles as Agents for Enhanced Radiotherapy

Traditional radiation therapy is limited by the radiotoxic effects on surrounding healthy tissues. This project investigated the use of a gold nanoparticle (AuNP) conjugated to a cell-penetrating peptide (CPP) to increase tumour cell death during radiotherapy by maximizing the cellular import of the gold nanoparticles. ~8300 octaarginine CPPs were coupled per 30 nm AuNP through poly(ethylene glycol) spacers (AuNP-PEG-CPP). The CPPs enhanced the internalization of the AuNPs into three human breast cancer cell lines by a factor >2 as compared to untargeted AuNPs. Cells were treated with AuNP-PEG-CPP for 24 hours, prior to radiotherapy and their long-term proliferation was assessed in clonogenic assays. The increased internalization of AuNPs by the CPPs resulted in greater cell death following exposure to 300 kVp radiotherapy, by a dose enhancement factors between 1.3 and 2.1 depending on the cell line. These findings illustrate the potential of using AuNP-CPPs to enhance radiotherapy in patients.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OTU.1807/43000
Date03 December 2013
CreatorsLatimer, Caitlin
ContributorsGariepy, Jean, Pignol, Jean-Philippe
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Languageen_ca
Detected LanguageEnglish
TypeThesis

Page generated in 0.0016 seconds