Quantum walks are the quantum mechanical analogue of classical random walks. Discrete-time quantum walks have been introduced and studied mostly on the line Z or higher dimensional space Z d but rarely defined on graphs with fractal dimensions because the coin operator depends on the position and the Fourier transform on the fractals is not defined. Inspired by its nature of classical walks, different quantum walks will be defined by choosing different shift and coin operators. When the coin operator is uniform, the results of classical walks will be obtained upon measurement at each step. Moreover, with measurement at each step, our results reveal more information about the classical random walks. In this dissertation, two graphs with fractal dimensions will be considered. The first one is Sierpinski gasket, a degree-4 regular graph with Hausdorff di- mension of df = ln 3/ ln 2. The second is the Cantor graph derived like Cantor set, with Hausdorff dimension of df = ln 2/ ln 3. The definitions and amplitude functions of the quantum walks will be introduced. The main part of this dissertation is to derive a recursive formula to compute the amplitude Green function. The exiting probability will be computed and compared with the classical results. When the generation of graphs goes to infinity, the recursion of the walks will be investigated and the convergence rates will be obtained and compared with the classical counterparts. / Mathematics
Identifer | oai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/3938 |
Date | January 2018 |
Creators | Zhao, Kai |
Contributors | Yang, Wei-shih, 1954-, Futer, David, Szyld, Daniel, Shi, Justin Y. |
Publisher | Temple University. Libraries |
Source Sets | Temple University |
Language | English |
Detected Language | English |
Type | Thesis/Dissertation, Text |
Format | 69 pages |
Rights | IN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/ |
Relation | http://dx.doi.org/10.34944/dspace/3920, Theses and Dissertations |
Page generated in 0.0022 seconds