Return to search

Hierarchical scheduling for predictable execution of real-time software components and legacy systems

This dissertation presents techniques to achieve predictable execution of coarse-grained software components and for preservation of temporal properties of components during their integration and reuse. The dissertation presents a novel concept runnable virtual node (RVN) which interaction with the environment is bounded both by a functional and a temporal interface, and the validity of its internal temporal behaviour is preserved when integrated with other components or when reused in a new environment. The realization of RVN exploits techniques for hierarchical scheduling to achieve temporal isolation, and the principles from component-based software-engineering to achieve functional isolation. The proof-of-concept case studies executed on a micro-controller demonstrate the preserving of real-time properties within software components for predictable integration and reusability in a new environment, in both hierarchical scheduling and RVN contexts. Further, a multi-resource server (MRS) is proposed and implemented to enable predictable execution when composing multiple real-time components on a COTS multicore platform. MRS uses resource reservation for both CPU-bandwidth and memory-bus bandwidth to bound the interferences between tasks running on the same core, as well as, between tasks running on different cores. The later could, without MRS, interfere with each other due to contention on a shared memory-bus and memory. The results indicated that MRS can be used to "encapsulate" legacy systems and to give them enough resources to fulfill their purpose. In the dissertation, the compositional schedulability analysis for MRS is also provided and an experimental study is performed to bring insight on the correlation between the server budgets. We believe that the proposed approaches enable a faster software integration and support legacy reuse and that this work transcend the boundaries of software engineering and real-time systems. / PPMSched / PROGRESS

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:mdh-26548
Date January 2014
CreatorsInam, Rafia
PublisherMälardalens högskola, Inbyggda system, Västerås : Mälardalen University
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationMälardalen University Press Dissertations, 1651-4238 ; 169

Page generated in 0.0017 seconds