Calcium-influx through ionotropic glutamate receptors expressed on non-excitable cells, such as CNS glia, may regulate important cell events via intracellular signaling mechanisms. Oligodendrocytes and oligodendrocyte progenitors (OPCs), two glial populations supporting CNS myelination and myelin repair, express AMPA and NMDA receptors. Although calcium-influx through these receptors is thought to cause glutamate excitotoxicity to oligodendrocytes in CNS injuries, more recent studies suggest that AMPA or NMDA receptor-mediated synaptic transmission between neurons and OPCs plays a positive role in neuronal activity-dependent oligodendrocyte development and regeneration. Given the opposing roles of glutamate receptors in oligodendrocyte death and repair, the clinical relevance of these receptors in white matter injuries remain unclear. Another major challenge for exploring the role of these receptors in white matter injuries is that OPCs and neurons express a similar complement of AMPA and NMDA receptor subunits, which has complicated the interpretation of pharmacological manipulations and global genetic deletion approaches. To define the cell autonomous role of AMPA and NMDA receptor-mediated calcium signaling in oligodendroglia, I abolished the calcium influx through glutamate receptors using two different genetic approaches, and examined their impacts on oligodendrocyte development, injury-induced cell death, and regeneration. First, I employed a new mouse line which allows overexpression of GluA2, the calcium-impermeable AMPA receptor subunit, in a Cre activity-dependent manner. After crossing these mice with OPC- or oligodendrocyte-lineage-specific Cre mice, I applied hypoxic-ischemic injury to these multiple transgenic mice. Surprisingly, even though AMPA receptor-mediated calcium influx was blocked in OPCs, oligodendrogenesis or myelin integrity was not affected. However, GluA2 overexpression significantly promoted oligodendrocyte regeneration and OPC proliferation after injury, while the same manipulation in oligodendrocytes did not protect them from the initial cell loss. Moreover, GluA2 overexpression also stimulated transcriptional activities linked to myelinogenesis, even without injury. Second, I used conditional knockout mice for Grin1, the gene encoding an essential subunit of NMDA receptor complexes. As with GluA2 overexpressing mice, the removal of NMDA receptors from OPCs or all oligodendroglia did not significantly change normal oligodendrocyte development. However, the ablation of NMDA receptor in OPCs exacerbated oligodendrocyte loss by impairing new oligodendrogenesis in hypoxic-ischemic injury. These results suggest that neither AMPA receptors nor NMDA receptors mediate glutamate excitotoxicity in oligodendrocytes in neonatal hypoxic-ischemic injury. Instead, these receptors play distinct roles in post-injury oligodendrocyte development: AMPA receptor-mediated calcium suppresses oligodendrocyte regeneration, and NMDA receptor signaling supports oligodendrocyte regeneration after injury. / Biomedical Sciences
Identifer | oai:union.ndltd.org:TEMPLE/oai:scholarshare.temple.edu:20.500.12613/1610 |
Date | January 2019 |
Creators | Khawaja, Rabia Raheel |
Contributors | Kang, Shin Hyeok, Smith, George M., Kim, Seonhee, Ramirez, Servio H., Grinspan, Judith B. |
Publisher | Temple University. Libraries |
Source Sets | Temple University |
Language | English |
Detected Language | English |
Type | Thesis/Dissertation, Text |
Format | 130 pages |
Rights | IN COPYRIGHT- This Rights Statement can be used for an Item that is in copyright. Using this statement implies that the organization making this Item available has determined that the Item is in copyright and either is the rights-holder, has obtained permission from the rights-holder(s) to make their Work(s) available, or makes the Item available under an exception or limitation to copyright (including Fair Use) that entitles it to make the Item available., http://rightsstatements.org/vocab/InC/1.0/ |
Relation | http://dx.doi.org/10.34944/dspace/1592, Theses and Dissertations |
Page generated in 0.0011 seconds