The work in this thesis aims at studying the problems related to the robustness of a face recognition system where specific attention is given to the issues of handling the image variation complexity and inherent limited Unique Characteristic Information (UCI) within the scope of unfamiliar identity recognition environment. These issues will be the main themes in developing a mutual understanding of extraction and classification tasking strategies and are carried out as a two interdependent but related blocks of research work. Naturally, the complexity of the image variation problem is built up from factors including the viewing geometry, illumination, occlusion and other kind of intrinsic and extrinsic image variation. Ideally, the recognition performance will be increased whenever the variation is reduced and/or the UCI is increased. However, the variation reduction on 2D facial images may result in loss of important clues or UCI data for a particular face alternatively increasing the UCI may also increase the image variation. To reduce the lost of information, while reducing or compensating the variation complexity, a hybrid technique is proposed in this thesis. The technique is derived from three conventional approaches for the variation compensation and feature extraction tasks. In this first research block, transformation, modelling and compensation approaches are combined to deal with the variation complexity. The ultimate aim of this combination is to represent (transformation) the UCI without losing the important features by modelling and discard (compensation) and reduce the level of the variation complexity of a given face image. Experimental results have shown that discarding a certain obvious variation will enhance the desired information rather than sceptical in losing the interested UCI. The modelling and compensation stages will benefit both variation reduction and UCI enhancement. Colour, gray level and edge image information are used to manipulate the UCI which involve the analysis on the skin colour, facial texture and features measurement respectively. The Derivative Linear Binary transformation (DLBT) technique is proposed for the features measurement consistency. Prior knowledge of input image with symmetrical properties, the informative region and consistency of some features will be fully utilized in preserving the UCI feature information. As a result, the similarity and dissimilarity representation for identity parameters or classes are obtained from the selected UCI representation which involves the derivative features size and distance measurement, facial texture and skin colour. These are mainly used to accommodate the strategy of unfamiliar identity classification in the second block of the research work. Since all faces share similar structure, classification technique should be able to increase the similarities within the class while increase the dissimilarity between the classes. Furthermore, a smaller class will result on less burden on the identification or recognition processes. The proposed method or collateral classification strategy of identity representation introduced in this thesis is by manipulating the availability of the collateral UCI for classifying the identity parameters of regional appearance, gender and age classes. In this regard, the registration of collateral UCI s have been made in such a way to collect more identity information. As a result, the performance of unfamiliar identity recognition positively is upgraded with respect to the special UCI for the class recognition and possibly with the small size of the class. The experiment was done using data from our developed database and open database comprising three different regional appearances, two different age groups and two different genders and is incorporated with pose and illumination image variations.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:564390 |
Date | January 2013 |
Creators | Adam, Mohamad Z. |
Publisher | Loughborough University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://dspace.lboro.ac.uk/2134/11431 |
Page generated in 0.002 seconds