Les travaux effectués dans cette thèse s'inscrivent dans les problématiques de modélisation d'environnement pour la localisation par vision monoculaire. Nous nous intéressons tout particulièrement à la modélisation des environnements intérieurs dynamiques. Les environnements intérieurs sont constitués d'une multitude d'objets susceptibles d'être déplacés. Ces déplacements modifient de façon notable la structure et l'apparence de l'environnement et perturbent les méthodes actuelles de localisation par vision. Nous présentons dans ces travaux une nouvelle approche pour la modélisation d'un environnement et son évolution au fil du temps. Dans cette approche, nous définissons la scène explicitement comme une structure statique et un ensemble d'objets dynamiques. L'objet est défini comme une entité rigide qu'un utilisateur peut prendre et déplacer et qui est repérable visuellement. Nous présentons tout d'abord comment détecter et apprendre automatiquement les objets d'un environnement dynamique. Alors que les méthodes actuelles de localisation filtrent les incohérences dues aux modifications de la scène, nous souhaitons analyser ces modifications pour extraire des informations supplémentaires. Sans aucune connaissance a priori, un objet est défini comme une structure rigide ayant un mouvement cohérent par rapport à la structure statique de la scène. En associant deux méthodes de localisation par vision reposant sur des paradigmes différents, nous comparons les multiples passages d'une caméra dans un même environnement. La comparaison permet de détecter des objets ayant bougé entre deux passages. Nous pouvons alors, pour chaque objet détecté, apprendre un modèle géométrique et un modèle d'apparence et retenir les positions occupées par l'objet dans les différentes explorations. D'autre part, à chaque nouveau passage, la connaissance de l'environnement est enrichie en mettant à jour les cartes métrique et topologique de la structure statique de la scène. La découverte d'objet par le mouvement repose en grande partie sur un nouvel algorithme de détection de multiples structures entre deux vues que nous proposons dans ces travaux. Etant donné un ensemble de correspondances entre deux vues similaires, l'algorithme, reposant sur le RANSAC, segmente les structures correspondant aux différentes paramétrisations d'un modèle mathématique. La méthode est appliquée à la détection de multiples homographies pour détecter les plans de la scène et à la détection de multiples matrices fondamentales pour détecter les objets rigides en mouvement. La modélisation de l'environnement que nous proposons est utilisée dans une nouvelle formulation de reconnaissance de lieu prenant en compte la connaissance d'objets dynamiques susceptibles d'être présents dans l'environnement. Le modèle du lieu est constitué de l'apparence de la structure statique observée dans ce lieu. Une base de données d'objets est apprise à partir des précédentes observations de l'environnement avec la méthode de découverte par le mouvement. La méthode proposée permet à la fois de détecter les objets mobiles présents dans le lieu et de rejeter les erreurs de détection dues à la présence de ces objets. L'ensemble des approches proposées sont évaluées sur des données synthétiques et réelles. Des résultats qualitatifs et quantitatifs sont présentés tout au long du mémoire.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00936114 |
Date | 07 May 2013 |
Creators | Decrouez, Marion |
Publisher | Université de Grenoble |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0027 seconds