Soutenue par les progrès récents et rapides des techniques d'acquisition 3D, la reconnaissance d'objets 3D a suscité de nombreux efforts de recherche durant ces dernières années. Cependant, il reste à résoudre dans ce domaine plusieurs problématiques liées à la grande quantité d'information, à l'invariance à l'échelle et à l'angle de vue, aux occlusions et à la robustesse au bruit.Dans ce contexte, notre objectif est de reconnaitre un objet 3D isolé donné dans une vue requête, à partir d'une base d'apprentissage contenant quelques vues de cet objet. Notre idée est de formuler une méthodologie locale qui combine des aspects d'approches existantes et apporte une amélioration sur la performance de la reconnaissance.Nous avons opté pour une méthode par points d'intérêt (PIs) fondée sur des mesures de la variation locale de la forme. Notre sélection de points saillants est basée sur la combinaison de deux espaces de classification de surfaces : l'espace SC (indice de forme- intensité de courbure), et l'espace HK (courbure moyenne-courbure gaussienne).Dans la phase de description de l'ensemble des points extraits, nous proposons une signature d'histogrammes, qui joint une information sur la relation entre la normale du point référence et les normales des points voisins, avec une information sur les valeurs de l'indice de forme de ce voisinage. Les expérimentations menées ont permis d'évaluer quantitativement la stabilité et la robustesse de ces nouveaux détecteurs et descripteurs.Finalement nous évaluons, sur plusieurs bases publiques d'objets 3D, le taux de reconnaissance atteint par notre méthode, qui montre des performances supérieures aux techniques existantes.
Identifer | oai:union.ndltd.org:CCSD/oai:pastel.archives-ouvertes.fr:pastel-00871080 |
Date | 21 March 2013 |
Creators | Shaiek, Ayet |
Publisher | Ecole Nationale Supérieure des Mines de Paris |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0016 seconds