Le système d’identification d’iris est considéré comme l’une des meilleures technologies biométriques. Toutefois, des problèmes liés à la segmentation de l’iris et à la normalisation de la texture de l’iris sont généralement signalés comme principales origines des reconnaissances incorrectes. Dans notre travail, trois contributions principales sont proposées pour améliorer le système d’identification d’iris. Une nouvelle méthode de segmentation est développée. Elle détecte la frontière externe de l’iris par un contour circulaire et la pupille, d’une manière précise, à l’aide d’un modèle de contour actif. Ensuite, une nouvelle méthode de normalisation est proposée. Elle assure une représentation plus robuste et un meilleur échantillonnage de la texture de l’iris comparée aux méthodes traditionnelles. Enfin en utilisant le système d’identification d’iris proposé, la localisation des caractéristiques discriminantes dans une région d’iris est identifiée. Nous vérifions que l’information la plus importante de la région de l’iris se trouve à proximité de la pupille et que la capacité discriminante de la texture diminue avec la distance à la pupille. Les méthodes de segmentation et de normalisation développées sont testées et comparées à un système de référence sur une base de données contenant 2639 images d’iris. Une amélioration des performances de reconnaissance valide l’efficacité du système proposé / Iris identification system is considered among the best biometric technologies. However problems related to the segmentation of the iris and to the normalization of iris templates are generally reported and induce loss of recognition performance. In this work three main contributions are made to the progress of the iris identification system. A new segmentation method is developed. It approximates the outer iris boundary with a circle and segments accurately the inner boundary of the iris by use of an active contour model. Next, a new normalization method is proposed. It leads to a more robust characterization and a better sampling of iris textures compared to traditional normalization methods. Finally using the proposed iris identification system, the location of discriminant characteristics along iris templates is identified. It appears that the most discriminant iris characteristics are located in inner regions of the iris (close to the pupil boundary) and that the discriminant capabilities of these characteristics decreases as outer regions of the iris are considered. The developed segmentation and normalization methods are tested and compared to a reference iris identification system over a database of 2639 iris images. Improvement in recognition performance validates the effectiveness of the proposed system
Identifer | oai:union.ndltd.org:theses.fr/2013TROY0021 |
Date | 21 October 2013 |
Creators | Hilal, Alaa |
Contributors | Troyes, Université libanaise, Beauseroy, Pierre, Daya, Bassam |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds