Return to search

La représentation des documents par réseaux de neurones pour la compréhension de documents parlés / Neural network representations for spoken documents understanding

Les méthodes de compréhension de la parole visent à extraire des éléments de sens pertinents du signal parlé. On distingue principalement deux catégories dans la compréhension du signal parlé : la compréhension de dialogues homme/machine et la compréhension de dialogues homme/homme. En fonction du type de conversation, la structure des dialogues et les objectifs de compréhension varient. Cependant, dans les deux cas, les systèmes automatiques reposent le plus souvent sur une étape de reconnaissance automatique de la parole pour réaliser une transcription textuelle du signal parlé. Les systèmes de reconnaissance automatique de la parole, même les plus avancés, produisent dans des contextes acoustiques complexes des transcriptions erronées ou partiellement erronées. Ces erreurs s'expliquent par la présence d'informations de natures et de fonction variées, telles que celles liées aux spécificités du locuteur ou encore l'environnement sonore. Celles-ci peuvent avoir un impact négatif important pour la compréhension. Dans un premier temps, les travaux de cette thèse montrent que l'utilisation d'autoencodeur profond permet de produire une représentation latente des transcriptions d'un plus haut niveau d'abstraction. Cette représentation permet au système de compréhension de la parole d'être plus robuste aux erreurs de transcriptions automatiques. Dans un second temps, nous proposons deux approches pour générer des représentations robustes en combinant plusieurs vues d'un même dialogue dans le but d'améliorer les performances du système la compréhension. La première approche montre que plusieurs espaces thématiques différents peuvent être combinés simplement à l'aide d'autoencodeur ou dans un espace thématique latent pour produire une représentation qui augmente l'efficacité et la robustesse du système de compréhension de la parole. La seconde approche propose d'introduire une forme d'information de supervision dans les processus de débruitages par autoencodeur. Ces travaux montrent que l'introduction de supervision de transcription dans un autoencodeur débruitant dégrade les représentations latentes, alors que les architectures proposées permettent de rendre comparables les performances d'un système de compréhension reposant sur une transcription automatique et un système de compréhension reposant sur des transcriptions manuelles. / Application of spoken language understanding aim to extract relevant items of meaning from spoken signal. There is two distinct types of spoken language understanding : understanding of human/human dialogue and understanding in human/machine dialogue. Given a type of conversation, the structure of dialogues and the goal of the understanding process varies. However, in both cases, most of the time, automatic systems have a step of speech recognition to generate the textual transcript of the spoken signal. Speech recognition systems in adverse conditions, even the most advanced one, produce erroneous or partly erroneous transcript of speech. Those errors can be explained by the presence of information of various natures and functions such as speaker and ambience specificities. They can have an important adverse impact on the performance of the understanding process. The first part of the contribution in this thesis shows that using deep autoencoders produce a more abstract latent representation of the transcript. This latent representation allow spoken language understanding system to be more robust to automatic transcription mistakes. In the other part, we propose two different approaches to generate more robust representation by combining multiple views of a given dialogue in order to improve the results of the spoken language understanding system. The first approach combine multiple thematic spaces to produce a better representation. The second one introduce new autoencoders architectures that use supervision in the denoising autoencoders. These contributions show that these architectures reduce the difference in performance between a spoken language understanding using automatic transcript and one using manual transcript.

Identiferoai:union.ndltd.org:theses.fr/2017AVIG0222
Date27 November 2017
CreatorsJanod, Killian
ContributorsAvignon, Linarès, Georges
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0021 seconds