Return to search

Texture analysis using complex system models: fractal dimension, swarm systems and non-linear diffusion / Análise de texturas usando sistemas complexos: dimensão fractal, multiagentes e difusão não-linear

Texture is one of the primary visual attributes used to describe patterns found in nature. Several texture analysis methods have been used as powerful tools for real applications involving analysis and computer vision. However, existing methods do not successfully discriminate the complexity of texture patterns. Such methods disregard the possibility of describing image structures by means of measures such as the fractal dimension. Fractality-based measures allow a non-integer geometric interpretation with applications in areas such as mathematics, physics, and biology. With this gap in mind, the central hypothesis of this thesis is that textures can be described as irregular fractal surfaces due to their complex geometry; such geometry can be exploited for image analysis and computer vision. By exploring such possibilities, pushing the limits of the state-of-the-art, this thesis starts with an analysis of texture features achieved by means of agents on image surfaces. To do so, we used the Bouligand-Minkowski fractal dimension, swarm-system Artificial Crawlers, and non-linear diffusion of Perona-Malik, techniques that led to methodologies with efficacy and efficiency comparable to the state-of-the-art. Our first method combines fractal dimension with random walks on the surface of images. In a second approach, non-linear diffusion is used to represent texture images at different scales, which are described via their fractal dimension for image classification purposes. In a third proposal, we employ fractal dimension concepts over multiple scales derived from the same image for a richer texture description. One of the purposes is the automatic detection of diseases in soybean leaves. Finally, texture characteristics were exploited in a method based on complex networks used to analyze the agglomeration of particles in nanotechnology images. The results achieved in the four methodologies described in this thesis demonstrated the potential of using texture features in tasks of classification and pattern recognition. The contributions of this work shall support significant advances in materials engineering, computer vision, and agriculture. / A textura é um dos principais atributos visuais para a descrição de padrões encontrados na natureza. Diversos métodos de análise de textura têm sido usados como uma poderosa ferramenta para aplicações reais que envolvem análise de imagens e visão computacional. Entretanto, os métodos existentes não conseguem discriminar com sucesso a complexidade dos padrões de textura. Tais métodos desconsideram a possibilidade de se descrever estruturas de imagens por meio de medidas como a dimensão fractal. Medidas baseadas em fractalidade permitem uma interpretação geométrica não-inteira que possui aplicações encontradas em áreas como matemática, física, e biologia. Sobre esta lacuna metodológica, a hipótese central desta tese é que texturas presentes na natureza podem ser medidas como superfícies fractais irregulares devido à sua geometria complexa, o que pode ser explorado para fins de análise de imagens e visão computacional. Para superar tais limitações, avançando o estado da arte, esta tese se inicia com uma análise das características de texturas baseada em caminhadas aleatórias de agentes sobre superfícies de imagens. Esta primeira análise leva a um método que combina dimensão fractal com caminhadas de agentes sobre a superfície de imagens. Em uma segunda abordagem, usa-se a difusão não-linear para representar imagens de texturas em diferentes escalas, as quais são descritas via dimensão fractal para fins de classificação de imagens. Em uma terceira proposta, emprega-se a dimensão fractal sobre múltiplas escalas derivadas de uma mesma imagem com o propósito de se realizar a descrição multi-escala de texturas. Um dos propósitos específicos foi a detecção automática de doenças em folhas de soja. Por último, as características de textura foram exploradas segundo uma metodologia baseada em redes complexas para análise de aglomeração de partículas em imagens de nanotecnologia. Os resultados alcançados nesta tese demonstraram o potencial do uso de características de textura. Para tanto foram usadas técnicas de dimensão fractal de Bouligand-Minkowski, multiagentes Artificial Crawlerse difusão não-linear de Perona-Malik, os quais alcançaram eficácia e eficiência comparáveis ao do estado da arte. As contribuições obtidas devem suportar avanços significativos nas áreas de engenharia de materiais, visão computacional, e agricultura.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-24112016-113253
Date18 April 2016
CreatorsMachado, Bruno Brandoli
ContributorsRodrigues Junior, José Fernando
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguageEnglish
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0028 seconds