Return to search

Análise de modelos lineares em dados de contagens binomiais negativas, usando dados originais ou transformados para normalidade e homocedasticidade / Linear models analysis of negative binomial counts using original, and transformed data for normality and homocedasticity

Simularam-se 1000 ensaios para cada uma das 112 combinações de 4 populações (tratamentos), englobando casos de populações iguais e casos com diferenças em m, k ou ambos. Deve-se ter cuidado ao aplicar transformações de dados, particularmente se não há homogeneidade de k. A estatística C(α) proposta por BARNWAL & PAUL (1988), mostrou alguma robustez para valores não homogêneos de k, conduzindo a resultados equivalentes àqueles obtidos usado dados não transformados. A análise de variância, usado o teste de mínimo qui-quadrado XU2 mostrou ser viesado, superestimando valores quando a matriz de variâncias e covariâncias é desconhecida. Se a matriz de variâncias e covariâncias é conhecida, os resultados são equivalentes a aqueles obtidos dos dados originais. Resultados similares foram obtidos para populações menores, n=10, quando um poder decrescente do teste foi detectado. Foram escolhidos 20 casos e simularam-se 1000 ensaios para cada caso. / The well-known negative binomial distribution is quite frequently used to interpret counting variables, through different techniques. In order to compare these techniques, four populations of size n=50 were computer-generated for different values of the parameters m and k, using NORMAN & CANNON (1972) procedure. Comparisons of the transformations of variables, as suggested by BARBOSA (1985), were used. For that, 1000 essays were simulated for each one of the 112 combinations of 4 populations. This covered equal and different populations with respect to the parameters m, k or both. In conclusion, for some values of the parameters m and k, there is no necessity of any data transformation, particularly if depending of k. Statistics like C(α) proposed by BARNWAL & PAUL (1988) showed some robustness for non-homogeneous values of k, leading to equivalent results to that ones obtainned using untransformed data. The analysis of variance, using the minimum chi-square test U2 showed to be biased superestimating values when the variance-covariance matrix is unknown. If the variance-covariance matrix is knew the results are equivalent from those obtainned from original data. Similar results were obtainned for smaller populations, n=10, when a decreasing power of the tests was detected. In such a case 20 combinations and 1000 simulations for each combination were performed

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-20190821-113549
Date22 September 1989
CreatorsPião, Antonio Carlos Simões
ContributorsPerecin, Dilermando
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguageEnglish
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0024 seconds