By a representation of a C*-algebra A on a Hilbert space H we mean a morphism : A → L(H). After summing up neccessary knowledge from the theory of Banach and Hilbert spaces and C*-al- gebras we show that for every C*-algebra a representation exists. We describe its structure detiledly and we focus on examining cyclic representations. We find out that cyclic representations relate to the state space. Because every state can be expressed as an integral with respect to an appropriate measure on the states, in is possible to assign a measure on the state space to each cyclic represen- tation. Therefore, we investigate connexion of a representation with this measure as same as with the corresponding state. This leads us to the definition of an orthogonal measure. We find out that its properties relate with certain subalgebras of L(H). At the end we show that for a separable C*-algebra it is possible to express a representation fulfilling suitable assumptions in the form of a direct integral. 1
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:321357 |
Date | January 2013 |
Creators | Penk, Tomáš |
Contributors | Spurný, Jiří, Hamhalter, Jan |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0021 seconds