Return to search

Soft Computing Approaches to Routing and Wavelength Assignment in Wavelength-Routed Optical Networks

The routing and wavelength assignment (RWA) problem is essential for achieving efficient performance in wavelength-routed optical networks. For a network without wavelength conversion capabilities, the RWA problem consists of selecting an appropriate path and wavelength for each connection request while ensuring that paths that share common links are not assigned the same wavelength. The purpose of this research is to develop efficient adaptive methods for routing and wavelength assignment in wavelength-routed optical networks with dynamic traffic. The proposed methods utilize soft computing techniques including genetic algorithms, fuzzy control theory, simulated annealing, and tabu search. All four algorithms consider the current availability of network resources before making a routing decision. Simulations for each algorithm show that each method outperforms fixed and alternate routing strategies. The fuzzy-controlled algorithm achieved the lowest blocking rates and the shortest running times in most cases.

Identiferoai:union.ndltd.org:NCSU/oai:NCSU:etd-10312004-195203
Date30 November 2004
CreatorsLea, Djuana
ContributorsDr. Henry Nuttle, Dr. Elmor Peterson, Dr. Salah Elmaghraby, Dr. Shu-Cherng Fang
PublisherNCSU
Source SetsNorth Carolina State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://www.lib.ncsu.edu/theses/available/etd-10312004-195203/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to NC State University or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0017 seconds