Return to search

Pollen-based quantitative reconstruction of land-cover change in Europe from 11,500 years ago until present - A dataset suitable for climate modelling

The major objective of this thesis was to produce descriptions of the land vegetation-cover in Europe for selected time windows of the Holocene (6000, 3000, 500, 200, and 50 calendar years before present (BP=1950)) that can be used in climate modelling. Land vegetation is part of the climate system; its changes influence climate through biogeophysical and biogeochemical processes. Land use such as deforestation is one of the external forcings of climate change.  Reliable descriptions of vegetation cover in the past are needed to study land cover-climate interactions and understand the possible effects of present and future land-use changes on future climate. We tested and applied the REVEALS (Regional Estimates of VEgetation Abundance from Large Sites) model to estimate past vegetation in percentage cover over Europe using pollen records from lake sediments and peat bogs. The model corrects for the biases of pollen data due to intraspecific differences in pollen productivity and pollen dispersion and deposition in lakes and bogs. For the land-cover reconstructions in Europe and the Baltic Sea catchment we used 636 (grouped by 1˚x1˚ grid cells) and 339 (grouped by biogeographical regions) pollen records, respectively. The REVEALS reconstructions were performed for 25 tree, shrub and herb taxa. The grid-based REVEALS reconstructions were then interpolated using a set of statistical spatial models. We show that the choice of input parameters for the REVEALS application does not affect the ranking of the REVEALS estimates significantly, except when entomophilous taxa are included. We demonstrate that pollen data from multiple small sites provide REVEALS estimates that are comparable to those obtained with pollen data from large lakes, however with larger error estimates. The distance between the small sites does not influence the results significantly as long as the sites are at a sufficient distance from vegetation zone boundaries. The REVEALS estimates of open land for Europe and the Baltic Sea catchment indicate that the degree of landscape openness during the Holocene was significantly higher than previously interpreted from pollen percentages. The relationship between Pinus and Picea and between evergreen and summer-green taxa may also differ strongly whether it is based on REVEALS percentage cover or pollen percentages. These results provide entirely new insights on Holocene vegetation history and help understanding questions related to resource management by humans and biodiversity in the past. The statistical spatial models provide for the first time pollen-based descriptions of past land cover that can be used in climate modelling and studies of land cover-climate interactions in the past.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:lnu-40775
Date January 2014
CreatorsTrondman, Anna-Kari
PublisherLinnéuniversitetet, Institutionen för biologi och miljö (BOM), Växjö
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationLinnaeus University Dissertations ; 193/2014

Page generated in 0.0014 seconds