Return to search

Radio frequency interference modeling and mitigation in wireless receivers

In wireless communication systems, receivers have generally been designed under the assumption that the additive noise in system is Gaussian. Wireless receivers, however, are affected by radio frequency interference (RFI) generated from various sources such as other wireless users, switching electronics, and computational platforms. RFI is well modeled using non-Gaussian impulsive statistics and can severely degrade the communication performance of wireless receivers designed under the assumption of additive Gaussian noise.

Methods to avoid, cancel, or reduce RFI have been an active area of research over the past three decades. In practice, RFI cannot be completely avoided or canceled at the receiver. This dissertation derives the statistics of the residual RFI and utilizes them to analyze and improve the communication performance of wireless receivers. The primary contributions of this dissertation are to (i) derive instantaneous statistics of co-channel interference in a field of Poisson and Poisson-Poisson clustered interferers, (ii) characterize throughput, delay, and reliability of decentralized wireless networks with temporal correlation, and (iii) design pre-filters to mitigate RFI in wireless receivers. / text

Identiferoai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/ETD-UT-2011-08-3773
Date21 October 2011
CreatorsGulati, Kapil
Source SetsUniversity of Texas
LanguageEnglish
Detected LanguageEnglish
Typethesis
Formatapplication/pdf

Page generated in 0.0022 seconds