Return to search

Inkjet-printed quantum dot hybrid light-emitting devices—towards display applications

Abstract
This thesis presents a novel method for fabricating quantum dot light-emitting devices (QDLEDs) based on colloidal inorganic light-emitting nanoparticles incorporated into an organic semiconductor matrix. CdSe core/ZnS shell nanoparticles were inkjet-printed in air and sandwiched between organic hole and electron transport layers to produce efficient photon-emissive media. The light-emitting devices fabricated here were tested as individual devices and integrated into a display setting, thus endorsing the capability of this method as a manufacturing approach for full-colour high-definition displays.

By choosing inkjet printing as a deposition method for quantum dots, several problems currently inevitable with alternative methods are addressed. First, inkjet printing promises simple patterning due to its drop-on-demand concept, thus overruling a need for complicated and laborious patterning methods. Secondly, manufacturing costs can be reduced significantly by introducing this prudent fabrication step for very expensive nanoparticles.

Since there are no prior demonstrations of inkjet printing of electroluminescent quantum dot devices in the literature, this work dives into the basics of inkjet printing of low-viscosity, relatively highly volatile quantum dot inks: piezo driver requirements, jetting parameters, fluid dynamics in the cartridge and on the surface, nanoparticle assembly in a wet droplet and packing of dots on the surface are main concerns in the experimental part. Device performance is likewise discussed and plays an important role in this thesis. Several compositional QDLED structures are described. In addition, different pixel geometries are discussed. The last part of this dissertation deals with the principles of QDLED displays and their basic components: RGB pixels and organic thin-film transistor (OTFT) drivers. Work related to transistors is intertwined with QDLED work; ideas for surface treatments that enhance nanoparticle packing are carried over from self-assembled monolayer (SAM) studies in the OTFT field. Moreover, all the work done in this thesis project was consolidated by one method, atomic force microscopy (AFM), which is discussed throughout the entire thesis.

Identiferoai:union.ndltd.org:oulo.fi/oai:oulu.fi:isbn978-951-42-6127-5
Date09 March 2010
CreatorsHaverinen, H. (Hanna)
PublisherUniversity of Oulu
Source SetsUniversity of Oulu
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess, © University of Oulu, 2010
Relationinfo:eu-repo/semantics/altIdentifier/pissn/0355-3213, info:eu-repo/semantics/altIdentifier/eissn/1796-2226

Page generated in 0.002 seconds