Herein we report the synthesis of an RGD-ruthenium bipyridine [Ru(Bpy)2(BpyRGD)]2+ complex aimed at the detection of angiogenesis. Angiogenesis plays a critical role in many pathophysiological processes, such as tumor growth. The αv-integrins (αv[beta]3, αv[beta]5) are currently used as molecular targeting sites for anti-angiogenic therapies. The [Ru(Bpy)2(BpyRGD)]2+ complex is an organometallic luminescent probe, which enables noninvasive, in vitro imaging of αv[beta]3 expression. Peptides containing the arginine-glycine-aspartic acid (RGD) sequence have been shown to bind strongly to the αvb3 integrin. The RuBpy probes are soluble in water, display long lifetimes, and are photochemically stable. These properties enable the Ru(tris-bpy) complexes to be useful in numerous applications in biophysical and cell biology. The [Ru(Bpy)2(BpyRGD)]2+ complex was synthesized by combining the succinimidyl ester on the RuBpy complex with the lysine of the c(RGDfK) peptide. The results of the one-photon fluorescence bioimaging showed selective binding of the cyclic RGD to αv[beta]3 integrin, which supports previous literature. The high luminescence intensity, long lifetimes, and low cell toxicity levels of dye [Ru(Bpy)2(BpyRGD)]2+, illustrates the potential usage of this probe for future biological applications.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:honorstheses1990-2015-2311 |
Date | 01 May 2012 |
Creators | Victoria, Rosemary |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | HIM 1990-2015 |
Page generated in 0.002 seconds