Return to search

Contribution of different components of innate and adaptive immunity to severity of flavivirus-induced encephalitis in susceptible and resistant hosts

[Truncate abstract] Flaviviruses are small, positive-stranded RNA viruses belonging to the family Flaviviridae. Flavivirus infection in humans could cause diseases ranging from febrile illnesses to fatal encephalitis. Mice provide a useful small animal model to study flavivirus-induced encephalitis in humans since mice also develop encephalitis during flavivirus infection. Some strains of mice have been shown to be resistant to flavivirus challenge and this resistance is conferred by a single autosomal dominant gene, designated as Flvr. Recently, OAS1b gene has been identified to be a gene candidate for Flvr. Several congenic resistant mouse strains have been developed by introducing resistance genes from outbred or wild mice onto the genetic background of susceptible C3H mice. These new resistant strains that carry different allelic variants at the Flv locus include C3H/PRI-Flvr (RV), C3H.MOLD-Flvmr (MOLD) and C3H.M.domesticus-Flvr-like (DUB), the latter two being developed in the same laboratory in which the work described in this thesis was accomplished. Preliminary studies in this laboratory found that flavivirus resistant mice are vulnerable to certain flavivirus infections, particularly when challenged by intracerebral (i.c.) route. Intracerebral (i.c.) challenge with flaviviruses such as West Nile virus (WNV) Sarafend strain and Kunjin virus (KUNV) MRM16 strain were found to induce high mortality in flavivirus resistant mice while infection with Murray Valley encephalitis virus (MVEV) OR2 strain did not cause any apparent disease in the same mice. ... Thus, it can be concluded that CD8+ T cells exerted harmful effect to resistant DUB mice during KUNV i.c. infection by producing excessive IFN[gamma] that could be toxic, causing functional loss of the CNS cells. It was shown from in vitro studies that WNV had the highest tropism for macrophages and dendritic cells, followed by KUNV. MVEV however did not replicate well in these cells. This combined with the data from the in vivo studies indicates that macrophages might be involved in the pathogenesis of intraperitoneal (i.p.) infection of WNV but not KUNV and MVEV. The reason for this could be that the production of KUNV in macrophages may not be high enough to induce viraemia and subsequent fatal encephalitis in mice. In contrast, MVEV appears to use different mechanism or cells for virus dissemination. Although macrophages may not be involved in KUNV pathogenesis after i.p. infection, the fact that macrophages support KUNV replication in vitro may indicate the possibility that blood-borne macrophages were recruited to the brain where they can get infected with KUNV during i.c. infection and therefore could participate in KUNV pathogenesis in DUB mice. This study provides evidence for the first time on the detrimental effect of host antiviral immunity and inflammatory mediators during flavivirus i.c. infection in resistant mice. However, it also launches a new question on the selective cell tropism of KUNV versus MVEV responsible for inducing different pattern of immune responses and consequently leading to different outcomes of infection in resistant mice.

Identiferoai:union.ndltd.org:ADTP/202487
Date January 2008
CreatorsShomiad Shueb, Rafidah Hanim
PublisherUniversity of Western Australia. School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia. Microbiology Discipline Group
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
RightsCopyright Rafidah Hanim Shomiad Shueb, http://www.itpo.uwa.edu.au/UWA-Computer-And-Software-Use-Regulations.html

Page generated in 0.0188 seconds