Return to search

The Emergence of the RNA World on the Early Earth

Life on Earth likely began as an RNA world, where cell-free or compartmentalized ribonucleic acid (RNA) molecules dominated as the replicating and evolving lifeforms prior to the emergence of DNA- and protein-based life. The focus of this thesis is on when and how this RNA world emerged. We use astrophysical and geophysical studies to constrain when the Earth was habitable, and biosignature studies to constrain when the Earth was inhabited. From this we obtain a time interval for the emergence of life. Considering all these constraints, we find that the Earth was habitable as early as 4.5 Ga, or as late as 3.9 Ga, depending on whether the early influx of asteroids inhibited life from emerging. The time that the Earth was inhabited is more precisely constrained to 3.7 Ga. This suggests life emerged within 800 Myr, and possibly in < 200 Myr. Between 4.5–3.7 Ga, the continental crust was slowly rising up from the global ocean, providing dry land on which warm little ponds could form. We develop the theory for the emergence of RNA polymers in these pond environments, whose wet-dry cycles promote polymerization. RNA is comprised of chains of nucleotides, and the latter is made up of ribose, phosphate, and a characteristic nucleobase. We numerically model the survival and evolution of nucleobases in warm little ponds from meteorite and interplanetary dust sources. The wet-dry cycles of our ponds are controlled by precipitation, evaporation, and seepage. The nucleobase sinks include photodissociation, seepage, and hydrolysis. Nucleobase and nucleotide seepage is efficient, therefore nucleotides and RNA molecules must have emerged rapidly (< a few years) in order to avoid falling through pores at the base of the pond. We find that meteorites, not interplanetary dust particles, are the dominant source of nucleobases used for RNA synthesis. Finally, under these conditions, we find that first RNA polymers likely emerged before 4.17 Ga. / Thesis / Master of Science (MSc)

Identiferoai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/22309
Date January 2017
CreatorsPearce, Ben K. D.
ContributorsPudritz, Ralph, Physics and Astronomy
Source SetsMcMaster University
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0022 seconds