Transcription factors activated by exogenous or endogenous stimuli alter gene expression with major effects on chromatin accessibility and the epigenome. This thesis investigates that impact of environmental chemical and hormonal exposure on liver chromatin accessibility in a mouse liver model. Exposure to the constitutive androstane receptor (CAR)-specific agonist ligand 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) induces localized changes in chromatin accessibility at several thousand DNase hypersensitive sites (DHS). Activating histone marks, associated with enhancers and promoters, were induced by TCPOBOP and were highly enriched at opening DHS. Opening DHS were highly enriched for CAR binding sites and nuclear receptor direct repeat-4 motifs. These DHS were also enriched for the CAR heterodimeric partner RXRA, binding by CEBPA and CEBPB, and motifs for other liver-specific factors. Thus, TCPOBOP alters the enhancer landscape through changes in histone marks and by mechanisms linked to induced CAR binding. In other studies, the impact of pituitary growth hormone (GH) secretion patterns on chromatin accessibility changes associated with sex-biased liver gene expression was examined. In adult male liver, the transcription factor STAT5 is directly activated by each successive plasma GH pulse. In female liver, STAT5 is persistently activated by the near-continuous stimulation by plasma GH. A majority of the ~4,000 GH-regulated, sex-biased DHS have chromatin marks characteristic of enhancers and were enriched for proximity to sex-biased gene promoters. Chromatin accessibility is thus a key feature of sex-differential gene expression. Two major classes of male-biased DHS were identified: dynamic male-biased DHS, almost all bound by STAT5, which undergo repeated cycles of chromatin opening and closing induced by each GH pulse; and static male-biased DHS, whose accessibility is unaffected GH/STAT5 pulses and whose sex bias results from these chromatin sites being more closed in female liver. Sites with STAT5 binding showed greater chromatin opening, many of which also contain the STAT5 motif. Finally, the effect of a single GH pulse on hypophysectomized male mouse liver was investigated to identify DHS responsive to the male, pulsatile-GH, secretion pattern. These studies demonstrate that widespread epigenetic changes associated with target gene expression are induced by xenobiotics and hormones regulating liver gene expression. / 2022-01-31T00:00:00Z
Identifer | oai:union.ndltd.org:bu.edu/oai:open.bu.edu:2144/39470 |
Date | 31 January 2020 |
Creators | Rampersaud, Andy |
Contributors | Waxman, David |
Source Sets | Boston University |
Language | en_US |
Detected Language | English |
Type | Thesis/Dissertation |
Page generated in 0.0213 seconds