The advent of recent high throughput sequencing technologies resulted in an unexplored big data of genomics and transcriptomics that might help to answer various research questions in Parkinson’s disease(PD) progression. While the literature has revealed various predictive models that use longitudinal clinical data for disease progression, there is no predictive model based on RNA-Sequence data of PD patients. This study investigates how to predict the PD Progression for a patient’s next medical visit by capturing longitudinal temporal patterns in the RNA-Seq data. Data provided by Parkinson Progression Marker Initiative (PPMI) includes 423 PD patients with a variable number of visits for a period of 4 years. We propose a predictive model based on a Recurrent Neural Network (RNN) with dense connections. The results show that the proposed architecture is able to predict PD progression from high dimensional RNA-seq data with a Root Mean Square Error (RMSE) of 6.0 and rank-order correlation of (r=0.83, p<0.0001) between the predicted and actual disease status of PD. We show empirical evidence that the addition of dense connections and batch normalization into RNN layers boosts its training and generalization capability.
Identifer | oai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/41411 |
Date | 06 November 2020 |
Creators | Ahmed, Siraj |
Contributors | Park, Jeongwon, Komeili, Majid |
Publisher | Université d'Ottawa / University of Ottawa |
Source Sets | Université d’Ottawa |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0021 seconds