Motoneuron diseases form a heterogeneous group of pathologies characterized by the progressive degeneration of motoneurons. More and more genetic factors associated with motoneuron diseases encode proteins that have a function in RNA metabolism, suggesting that disturbed RNA metabolism could be a common underlying problem in several, perhaps all, forms of motoneuron diseases. Recent results suggest that SMN interacts with hnRNP R and TDP-43 in neuronal processes, which are not part of the classical SMN complex. This point to an additional function of SMN, which could contribute to the high vulnerability of spinal motoneurons in spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). The current study elucidates functional links between SMN, the causative factor of SMA (spinal muscular atrophy), hnRNP R, and TDP-43, a genetic factor in ALS (amyotrophic lateral sclerosis). In order to characterize the functional interaction of SMN with hnRNP R and TDP-43, we produced recombinant proteins and investigated their interaction by co-immunoprecipitation. These proteins bind directly to each other, indicating that no other co-factors are needed for this interaction. SMN potentiates the ability of hnRNP R and TDP-43 to bind to ß-actin mRNA. Depletion of SMN alters the subcellular distribution of hnRNP R in motoneurons both in SMN-knockdown motoneurons and SMA mutant mouse (delta7 SMA). These data point to functions of SMN beyond snRNP assembly which could be crucial for recruitment and transport of RNA particles into axons and axon terminals, a mechanism which may contribute to SMA pathogenesis and ALS.
ALS and FTLD (frontotemporal lobar degeneration) are linked by several lines of evidence with respect to clinical and pathological characteristics. Both sporadic and familial forms are a feature of the ALS-FTLD spectrum, with numerous genes having been associated with these pathological conditions. Both diseases are characterized by the pathological cellular aggregation of proteins. Interestingly, some of these proteins such as TDP-43 and FUS have also common relations not only with ALS-FTLD but also with SMA. Intronic hexanucleotide expansions in C9ORF72 are common in ALS and FTLD but it is unknown whether loss of function, toxicity by the expanded RNA or dipeptides from non ATG-initiated translation is responsible for the pathophysiology. This study tries to characterize the cellular function of C9ORF72 protein. To address this, lentiviral based knockdown and overexpression of C9ORF72 was used in isolated mouse motoneurons. The results clearly show that survival of these motoneurons was not affected by altered C9ORF72 levels, whereas adverse effects on axon growth and growth cone size became apparent after C9ORF72 suppression. Determining the protein interactome revealed several proteins in complexes with C9ORF72. Interestingly, C9ORF72 is present in a complex with cofilin and other actin binding proteins that modulate actin dynamics. These interactions were confirmed both by co-precipitation analyses and in particular by functional studies showing altered actin dynamics in motoneurons with reduced levels of C9ORF72. Importantly, the phosphorylation of cofilin is enhanced in C9ORF72 depleted motoneurons and patient derived lymphoblastoid cells with reduced C9ORF72 levels. These findings indicate that C9ORF72 regulates axonal actin dynamics and the loss of this function could contribute to disease pathomechanisms in ALS and FTLD. / Motoneuronerkrankungen bilden eine heterogene Gruppe von Pathologien, die durch die progressive Degeneration von Motoneuronen charakterisiert sind. Zunehmend werden genetische Faktoren in Assoziation mit Motoneuronerkrankungen identifiziert, die eine Funktion im RNA Metabolismus besitzen, was dafür spricht, dass ein gestörter RNA Metabolismus ein gemeinsames zugrunde liegendes Problem in mehreren, vielleicht allen, Formen von Motoneuronerkrankungen sein könnte. Neuere Ergebnisse legen nahe, dass SMN mit hnRNP R und TDP-43 in neuronalen Prozessen interagiert, die nicht Teil der klassischen Rolle des SMN Komplexes sind. Dies deutet auf eine zusätzliche Funktion von SMN hin, die zur hohen Störanfälligkeit von spinalen Motoneuronen in spinaler Muskelatrophie (SMA) und amyotropher Lateralsklerose (ALS) beitragen könnte. Die vorliegende Arbeit beleuchtet funktionelle Beziehungen zwischen SMN, dem auslösenden Faktor der SMA, und hnRNP R, sowie TDP-43, einem weiteren genetischen Faktor bei ALS. Um die funktionelle Interaktion von SMN mit hnRNP R und TDP-43 zu charakterisieren, wurden rekombinante Proteine hergestellt und ihre Interaktion durch co-Immunpräzipitation untersucht. Diese Proteine binden direkt an einander, was darauf hindeutet, dass für diese Interaktion keine weiteren co-Faktoren erforderlich sind. SMN potenziert die Fähigkeit von hnRNP R und TDP-43, β-Aktin mRNA zu binden. Depletion von SMN verändert die subzelluläre Verteilung von hnRNP R in Motoneuronen sowohl in SMN-knock-down Motoneuronen, als auch in der SMA Mausmutante (delta7 SMA). Diese Daten deuten auf Funktionen von SMN jenseits der snRNP Assemblierung hin, die entscheidend für die Rekrutierung und den Transport von RNA Partikel in Axonen und Axon Terminalen sein könnten, einem Mechanismus, der zur Pathogenese von SMA und ALS beitragen könnte.
ALS und FTLD (fronto-temporale Lobus Degeneration) sind aufgrund mehrerer Nachweislinien bezüglich klinischer und pathologischer Charakteristika vernetzt. Sowohl sporadische als auch familiäre Formen sind Merkmal des ALS-FTLD Spektrums, wobei zahlreiche Gene mit diesen pathologischen Erscheinungen assoziiert wurden. Beide Krankheiten sind durch pathologische zelluläre Proteinaggregation charakterisiert. Interessanterweise haben einige dieser Proteine, wie TDP-43 und FUS, einen gemeinsamen Bezug nicht nur mit ALS-FTLD, sondern auch mit SMA. Intronische Hexanukleotid-Expansionen in C9ORF72 sind häufig in ALS und FTLD, es ist jedoch unbekannt, ob Funktionsverlust, Toxizität aufgrund der verlängerten RNA, oder Dipeptide von non-ATG initiierter Translation für die Pathophysiologie verantwortlich sind. Die vorliegende Arbeit versucht die zelluläre Funktion von C9ORF72 Protein zu charakterisieren. Hierfür wurde lentiviraler knock-down und Überexpression von C9ORF72 in isolierten Motoneuronen eingesetzt. Die Ergebnisse zeigen deutlich, dass das Überleben dieser Motoneurone durch veränderte C9ORF72 Konzentrationen nicht beeinflusst wurde, wohingegen negative Auswirkungen auf Axonwachstum und Wachstumskegelgröße nach C9ORF72 Suppression deutlich wurden. Die Bestimmung des Protein Interaktoms identifizierte mehrere Proteinkomplexe mit C9ORF72. Interessanterweise liegt C9ORF72 in einem Komplex mit Cofilin und anderen Aktin-bindenden Protein vor, welche die Aktin Dynamik modulieren. Diese Interaktionen wurden sowohl durch Analyse von co-Präzipitationen als auch besonders durch funktionelle Studien bestätigt, die eine veränderte Aktin Dynamik in Motoneuronen mit reduzierter C9ORF72 Konzentration zeigten. Wichtig ist die Beobachtung, dass die Phosphorylierung von Cofilin in C9ORF72 depletierten Motoneuronen und in Lymphoblastoid-Zellen mit reduzierter C9ORF72 Konzentration verstärkt ist. Diese Ergebnisse zeigen, dass C9ORF72 die axonale Aktin Dynamik reguliert und dass der Verlust dieser Funktion zu Krankheits-Pathomechanismen in ALS und FTLD beitragen könnte.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:14190 |
Date | January 2016 |
Creators | Sivadasan, Rajeeve |
Source Sets | University of Würzburg |
Language | English |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | https://creativecommons.org/licenses/by/3.0/de/deed.de, info:eu-repo/semantics/openAccess |
Page generated in 0.0166 seconds