Return to search

Thermal mapping for a highway gritting network

Thermal mapping, the measurement of road surface temperatures (RSTs) with an infra-red thermometer (IRT) mounted in a moving vehicle, seeks to identify a 'characteristic and repeatable' thermal fingerprint (temperature profile) for any stretch of road. A number of uses have been suggested for the process, including ice detection sensor network design and identifying stretches of road for selective gritting, with potential financial and environmental benefits due to reduced salt usage. The project 'Thermal Mapping for a Highway Gritting Network' has resulted in the most extensive survey yet undertaken. The aims were to investigate the reliability/repeatability of fingerprints and establish confidence limits. Comprehensive mapping of Sheffield roads took place during winters 1988/89- 1991/92. Significant errors (+/-3°C) in RST readings were identified after the first winter. Laboratory and road tests confirmed errors were produced due to warming/cooling of the IRT. Operating the IRT in a temperature control box eliminated these errors. Seven Sheffield routes were mapped during winters 89/90 and 90/91 with route 1 fingerprints (100) used for most of the analysis. The main factors affecting the variation in RSTs were confirmed as altitude and land-use with localised peaks occurring under bridges and by trees and tall buildings. The occurrence of cold air drainage on clear/calm (extreme') nights resulted in 'low' RSTs at relatively low altitudes. Differences were identified between what should have been identical extreme fingerprints. These were related to variations in the behaviour of cold air drainage. rom night to night and variations in wind direction/speed interacting with local relief. Confidence limits for extreme fingerprints and maps, taking into account possible errors in mapping and differences between fingerprints, were +/-20C and +/- 2.5°C respectively. With important decisions concerning gritting made when RSTs are +/-5°C confidence limits of this magnitude have important implications for thermal mapping. Future use should be restricted to sensor network design and assessment/re-design of gritting network.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:287916
Date January 1992
CreatorsBelk, David Graham
PublisherUniversity of Sheffield
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://etheses.whiterose.ac.uk/6016/

Page generated in 0.0023 seconds