Return to search

Design of a premixed gaseous rocket engine injector for ethylene and oxygen

A premixed gaseous rocket injector was designed and successfully operated over a limited range of fuel-rich operating conditions for the purpose of soot modeling for ethylene and oxygen mixtures. The injector had the advantage of delivering a homogenous mixture to the combustion chamber, lower soot production, and higher performance potential by removing the fuel atomization process which affects the combustion process and is inherent for non-premixed injectors. The premixed injector was operated at oxygen-fuel ratios from 1.0 to 1.8 with a mass flow of 0.024 kg/sec achieving a chamber pressure of 76 psi without propensity of flashback for 0.032[gamma] injector orifices. Increased mass flow rates of 0.027 kg/sec were achieved by increasing the injector orifice diameters to 0.0625[gamma] which produced a chamber pressure of 127 psi and a characteristic exhaust velocity efficiency of 90.1 %. Flashback was eventually observed at an oxygen-to-fuel ratio of 1.2 where the pressure drop was across the injector was less than 388.6 kPa and the bulk mixture velocity through the injector orifices was approximately 90 m/s. Maintaining bulk velocity sufficiently above this value should prevent flashback from occurring, but will likely need to be characterized for additional orifice diameters and pressure differentials. / Funded by: SEinc307.

Identiferoai:union.ndltd.org:nps.edu/oai:calhoun.nps.edu:10945/2512
Date12 1900
CreatorsDausen, David F.
ContributorsBrophy, Christopher M., Sinibaldi, Jose O., Naval Postgraduate School (U.S.)., Department of Mechanical and Astronautical Engineering
PublisherMonterey California. Naval Postgraduate School
Source SetsNaval Postgraduate School
Detected LanguageEnglish
TypeThesis
Formatxiv, 99 p. : col. ill. ;, application/pdf
RightsApproved for public release, distribution unlimited

Page generated in 0.0017 seconds