Return to search

Neural-Symbolic Integration

In this thesis, we discuss different techniques to bridge the gap between two different approaches to artificial intelligence: the symbolic and the connectionist paradigm. Both approaches have quite contrasting advantages and disadvantages. Research in the area of neural-symbolic integration aims at bridging the gap between them.
Starting from a human readable logic program, we construct connectionist systems, which behave equivalently. Afterwards, those systems can be trained, and later the refined knowledge be extracted.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:25163
Date05 October 2009
CreatorsBader, Sebastian
ContributorsHölldobler, Steffen, Hammer, Barbara, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0014 seconds