"Patients with repaired tetralogy of Fallot (TOF) account for the majority of cases with late onset right ventricle (RV) failure. The current surgical approach, which includes pulmonary valve replacement/insertion (PVR), has yielded mixed results in terms of RV functional recovery. Therefore, it is of great interest for clinicians to identify parameters, which may be used to predict post-PVR outcome. Pre- and post-PVR cardiac magnetic resonance (CMR) data were obtained from 60 repaired TOF patients with consent obtained for analysis. RV ejection fraction (RVEF) change (post-PVR RVEF minus pre-PVR RVEF) was used to measure post-PVR improvement. The patients were divided into Group 1(optimal outcome) and Group 2 (poor outcome) for comparison. RV wall thickness (WT) and curvature were obtained from CMR data for statistical analysis. Using mean quarter values (one CMR slice = 4 quarters), statistically significant differences in circumferential curvature (C-curvature) and longitudinal curvature (L-curvature) at end-diastole (maximum RV volume) and WT and C-curvature at end-systole (minimum RV volume) between Group 1 and Group 2 were found. Correlations between average WT at systole and between L-curvature at diastole and the change of RVEF were statistically significant. Specifically, the correlation coefficient between average WT at systole and change of RVEF was – 0.2715, (p = 0.036) and between L-curvature at diastole and change of RVEF 0.3297 (p = 0.01). This initial study suggests that the RV longitudinal curvature and wall thickness may be used as a marker/predictor for PVR surgical outcome. "
Identifer | oai:union.ndltd.org:wpi.edu/oai:digitalcommons.wpi.edu:etd-dissertations-1367 |
Date | 27 August 2014 |
Creators | Zuo, Heng |
Contributors | Dalin Tang, Advisor, , , Tal Geva |
Publisher | Digital WPI |
Source Sets | Worcester Polytechnic Institute |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Doctoral Dissertations (All Dissertations, All Years) |
Page generated in 0.0017 seconds